

RIVERFRONT PARK BRIDGES

INSPECTION AND ANALYSIS

TRIANGLE TRUSS BRIDGE

NOVEMBER 14, 2014 | Final Report With Revisions – 12/22/2014

This Page Intentionally Left Blank

TRIANGLE TRUSS BRIDGE

November 14, 2014- With Revisions - 12/22/2014

Prepared for

City of Spokane Steve Hansen, Senior Engineer

Prepared by

Kpff Consulting Engineers Marijean Frymoyer, PE Project Engineer / Inspection Team Leader

Sub-consultants

SWCA Environmental Consultant Eileen Heideman Architectural Historian

Table of Contents

Bridge Inspection and Analysis Report

1.	Bridge Description1
2.	Document Review1
3.	Evaluation Procedures1
4.	Evaluation Findings2
5.	Conclusions and Recommendations
6.	Permits and Cultural Resource Requirements4

Appendix A

Bridge Inspection Form Key Photographs Bridge Component Labeling System

Appendix B

Bridge Improvement Details Cost Estimate

Appendix C

Load Rating Results & Calculations

Appendix D

Photograph Log Photograph Contact Sheet

1. BRIDGE DESCRIPTION

The Triangle Truss was built for 1974 Expo to carry pedestrians over the north channel of the Spokane River. The deck truss is made of weathering steel with bolted connections. The weathering steel stringers and floorbeams support a timber plank deck. The total span length is 172 feet.

Figure 1: Aerial view of the Triangle Truss Bridge

2. DOCUMENT REVIEW

In preparation for this evaluation, Kpff reviewed the following documents related to the Triangle Truss Bridge:

- Structural Drawings G16 G20
- Previous routine inspection reports

3. EVALUATION PROCEDURES

ROUTINE BRIDGE INSPECTION

A visual inspection of the top of the deck and railings was performed. These components were accessed by foot. A visual inspection of the steel framing system, the steel deck truss, the bearings, and the concrete abutments was also performed. These components were accessed by climbing the lower chord and diagonals of the truss.

STRUCTURAL ANALYSIS

The timber deck, steel stringers, floorbeams, and truss were load rated using the LRFR method. The analysis was performed using SAP2000. A uniform pedestrian live load of 90 psf and the H10 design vehicle were used in the analysis. The analysis assumed that there was only one vehicle on the bridge at a time and the vehicle load did not act concurrently with the uniform pedestrian live load. Impact was not included in the analysis. A rating factor (RF) greater than or equal to 1.0 means that the bridge can safely carry the loads under investigation.

4. EVALUATION FINDINGS

BRIDGE INSPECTION

The steel components are in good condition with only minor surface rust; there was no measurable surface loss. All of the steel connections are intact. The bearing plates are corroded and have up to 3/4-inch of pack rust. The timber deck has evidence of normal wear and tear, including missing bolts. The north embankment is sloughing and is filling in material around the truss' lower panel point.

The bridge inspection report, bridge component labeling system, and photographs and are included in Appendix A.

STRUCTURAL ANALYSIS

The load rating analysis is reported as a Rating Factor (RF). The RF is the ratio of available capacity in each primary superstructure component over the specified live load combination under investigation. Based on AASHTO specifications, a RF less than 1.0 is interpreted to mean that one or more of the superstructure components do not meet current minimal capacity code standards and consideration should be given to either strengthening the subject component(s), or posting a sign identifying a maximum allowable load for the structure linked to the actual RF of the structure. Rating factors greater than 1.0 are interpreted to mean that all of the superstructure components have sufficient capacity to safely support the load under investigation, per the AASHTO specifications.

The controlling rating factor is dependent on the timber deck fully bracing the compression (top) flange of the steel stringers. The design drawings show a positive connection between the timber deck, the timber longitudinal nailers, and the steel stringers. This connection could not be inspected, but, assuming it is still intact, the timber deck provides enough rigidity to brace the top flange of the stringers.

For the pedestrian load case, the controlling RF = 1.25. The controlling component is the diagonal truss members. For the vehicle load case, the controlling RF = 0.16 for timber deck members in poor condition. The controlling component is the deck in flexure. The timber deck is not designed to carry vehicle loads, which reflects the low rating factor for the AASHTO H10 design vehicle. The City Parks Department should ensure that the bollards at the abutments remain in place to prevent vehicles from driving across the bridge.

The load rating calculations are included in Appendix C.

5. CONCLUSIONS AND RECOMMENDATIONS

If the current condition is maintained, this bridge will serve the community indefinitely.

In general, structural steel components that support bridges are conducive to corrosion from environmental conditions such as water, moisture, salts, air pollution, dirt and plants, bird droppings, and bird nests. The more these items are kept a bay the longer the bridge will last. Maintenance is critical, especially in the form of cleaning and removing debris, bird nests, and droppings from anyplace on the structure they can or do collect. The Triangle Bridge structural components, despite experiencing minor levels of corrosion over the past 30 years, have performed quite well. Currently, there is no reason to suspect that this bridge will not be in service for at least another 50 years and much longer if inspected and maintained on a regular basis.

The steel used for this bridge is weathering steel. Its protective coat is a result of a thin film of rust. It is an excellent system for this environment. However, if this protection system appears to degrade over time, painting the bridge becomes an option which can easily buy another 20 to 30 years of service life.

Maintenance of a few items, discussed below, will also help preserve the bridge and improve safety for the public

BEARINGS

The bearing plates should be cleaned of all debris and surface rust and should be treated with a protective paint system.

TIMBER DECK

The twisted and deteriorated boards and missing bolts should be replaced. Alternatively, the City could consider replacing the timber deck with a different material with a longer lifespan. By using a colored concrete mix with a special stamp or form liner, the concrete deck options could resemble a timber plank deck. Appendix B includes typical details and a cost comparison of different deck replacement options. The total estimated cost of the deck replacement, dependant on the material selected, is between \$241,000 and \$303,000. A timber deck replacement in kind has a lifespan of approximately 10 years. The concrete deck, glulam deck panels, and Ironwood deck have a lifespan of approximately 50 to 75 years.

STEEL TRUSS

The soil should be removed around panel point "L8" to provide 1 foot of clearance below the truss. This will improve load path clarity and reduce the potential for moisture-driven deterioration of the steel. The debris should be removed from the bottom chord panel points.

EROSION

The City should consider placing concrete slope protection at the north abutment to prevent further sloughing of the embankment.

FUTURE INSPECTIONS AND ANALYSIS

A routine walk-through inspection should be performed every two years. KPFF has provided inspection forms, which, if utilized on a continual basis will provide an invaluable record of the bridge condition and areas of continual problems over time, and thereby help inform the best way to care for the bridge over the next 75 years and preserve the City's investment in its infrastructure. The bridge will not need to be re-analyzed unless the bridge will be used in a manner different than considered during the original design, or there is significant deterioration to the primary structural elements.

6. PERMITS AND CULTURAL RESOURCE REQUIREMENTS

PERMITS

An environmental permit matrix was prepared by SWCA Environmental Consultants for the Riverfront Park Bridges. The proposed bridge improvement work may require the following permits or approvals:

- Hydraulic Project Approval permit from the Washington Department of Fish and Wildlife.
- State Environmental Policy Act Threshold Determination from the City of Spokane
- Critical Areas Review from the City of Spokane
- Shoreline Substantial Development Permit from the City of Spokane

More information can be found in SWCA's report.

APPENDIX A

	-	
BRIDGE INSPECTION FORM		. A-1

LIST OF PHOTOGRAPHS

<u>PHOTO</u>	DESCRIPTION	PAGE
1	Triangle Truss Bridge Deck (Looking South)	A-3
2	Triangle Truss Bridge Elevation (Looking Southwest)	A-3
3	Cracked and Split Timber Deck Planks	A-4
4	Missing Bolts in Timber Deck Planks	A-4
5	Typical Minor Corrosion of Steel Elements	A-5
6	Northwest Bearings have up to 3/4-inch of Pack Rust	A-5
7	Soil has Built Up around L8 Panel Point and Debris	
	has Collected at Lower Truss Panel Points	A-6

BRIDGE COMPONENT	LABELING	SYSTEM	A-7

PAGE

<u>PAGE</u>

CITY OF SPOKANE

						Bridge No.	
Bridge Name			Bridge Location				
Inspection Date	Inspector(s)				Agency		
Access Method						Weather	
Load Rating Date			Live Load	Pedestri	an	V	ehicle
Load Rating Factor(s)	Ped.	Veh.	Controlling Component	Pedestrian		Vehicle	
			PN				

Description of Bridge

Summary of Condition and Critical Findings

Summary of Recommendations

Summary of Bridge Condition

		No. of	%	Condition Rating*			
	Bridge Component		of **	8 – 7 Good	6 – 5 Fair	4 – 3 Poor	Comments
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							

*See Page 2 for detailed descriptions **Condition rating percentages are based on the % of area, length, or each of the bridge components inspected.

GENERAL NOTES

DESCRIPTION OF CONDITION OF BRIDGE COMPONENT						
Condition Value	Material	Description				
8 – 7	Steel	Like new, surface rust, minor pitting, no material loss. Connections are good. No damage.				
0-1	Concrete	No to minor/ insignificant defects includes: cracks, spalls, chips, consolidation, efflorescence.				
Very good \rightarrow Good	Timber	Beams: Minor splits, checks, or defects (one side), no decay or insects – sounds solid. Posts: Splits or cracks less than $\frac{3}{6}$ " (one side), no decay or insects – sounds solid.				
2 yr. insp. Cycle	Paint	No defects, no sign of rust including no freckled rust, no peeling, no exposed steel.				
No repairs.	Scour / Erosion	None or minor.				
6 – 5	Steel	Moderate corrosion, pitting, flaking, pack rust. Material loss is evident but barely measurable. Connections have up to moderate corrosion but remain fully functional. No cracks.				
Satisfactory \rightarrow Fair	Concrete	Some spalling but exposed rebar (if any) is insignificant or exhibits some surface rust; delamination is evident with or without evidence of rebar corrosion. Shear zone cracks are tight, barely measureable, and low density. Flexure zone cracks are measurable but less than .035 inch and low				
1 – 2 yr insp. cycle		density. Concrete may exhibit: efflorescence (moderate to heavy), surface rust, heavy map cracking, very poor consolidation. Settlement cracks in foundations and wall are stable and less than $\frac{1}{4}$ " wide.				
Monitor for repairs	Timber	Beams: Less than 3/3" splits – two sides or greater than 3/6" on one side. Some decay (max 10% by volume), some softness but sounds solid – no insects. Posts: More than 1/2 "splits – two sides or greater than 3/4" on one side. Decay is evident (greater than 20% by volume), timber may have extensive wetness and softness.				
Paint: Max 10 year life	Paint	Freckled rust, small areas of exposed steel, some peeling, oxidized.				
	Scour / Erosion	Evidence of scour, exposed footing, no undermining. Banks are sloughing, protection, if any, needs repair.				
4 – 3	Steel	Heavy to severe: corrosion, pitting, pack rust. Measurable material loss. Connections are heavily corroded, missing, and questionable functionality. Fatigue cracks.				
Poor \rightarrow Critical 3 mo – 1 yr. insp. cycle	Concrete	Large spalls, deep w/ exposed and corroded rebar w/ material loss evident. Cracks are wider, closely spaced, clearly structural in nature both in shear and flexure zone. Concrete quality appears poor w/ heavy scaling, stagilites, efflorescence, map cracking, extensive surface rust and delamination, and very poor consolidation of concrete. Settlement cracks are significant.				
(as needed) Repairs needed. (ASAP or one year)	Timber	Beams: Greater than %" on two sides. Moderate decay up to 20%, surface softness, do not sound solid – may have insects. Posts: Less than ½ "splits – two sides or greater than ½" on one side. Decay is evident (20%), wetness and soft.				
Re - naint	Paint	Extensive freckled rust, larger areas of exposed steel, heavily oxidized, extensive peeling.				
Ne - paint	Scour / Erosion	Undermining or threatens undermining in a manner that could impact structure stability. Banks are heavily eroded, protection if any is non-functional.				

Additional Comments by Component Number

Bridge Comp. No.	Comments

Photo 1 – Triangle Truss Bridge Deck (Looking South)

Photo 2 – Triangle Truss Bridge Elevation (Looking Southwest)

Photo 3 – Cracked and Split Timber Deck Planks

Photo 4 – Missing Bolts in Timber Deck Planks

Photo 5 – Typical Minor Corrosion of Steel Elements

Photo 6 –Northwest Bearings have up to 3/4-inch of Pack Rust

Photo 7 – Soil has Built Up around L8 Panel Point and debris has collected at Lower Truss Panel Points

APPENDIX B

IMPROVEMENT DETAILS COST ESTIMATES

		REGIÓN N	O. STATE	FEDERAL AID PR	OJECT NO.	SHEET NO.
		EASTER	WASH.			
	GLULAM DECK			/ ROUC	GH SAWN	
	PANEL			/ FINIS	Н	
	\backslash					
				,		
	-ئۇ					
	L _		∽╨र			
		0		OTEEL "	7" 0110	
		11		SIEEL	Z CLIP	
		ii Ii	/—E>	KIST WF		
			/			
	c =					
	DECK DANEL					
<u>GLULAIVI</u>	<u>DLCN FAINLL</u> $= 1.1/2^{"} = 1'-0"$					
SUALE	2. 1 1/2 = 1 -0					
	PROJECT NAME: RIVERFRONT	PAR	K BR	RIDGES		
	BRIDGE NAME:		TYPE C	F IMPROVEMENT:	BRIDO	GE
INGTON					-	
RVICES	TRIANGLE AND WOODEN BRID	GES	c	TY PROJECT NUMBER	PLAN NL	JMBER
RVICES	TRIANGLE AND WOODEN BRID	GES	2	TY PROJECT NUMBER	PLAN NL	JMBER
RVICES	TRIANGLE AND WOODEN BRID DECK REPLACEMENT	GES	EFN:	TY PROJECT NUMBER	PLAN NL	f I

20675 S.W. 105th Ave. Post Office Box 130 Tualatin, OR 97062-0130

Telephone: (503) 692-6900 Fax: (503) 692-6434 wwsi@westernwoodstructures.com www.westernwoodstructures.com

Timber Bridge Maintenance Procedures

Western Wood Structures offers forty years of experience and expertise in the design and fabrication of your modern timber bridge. You can be assured that our state-of-the-art techniques result in a bridge that will deliver an effective service life of 75+ years, with only a few simple maintenance procedures to follow.

A pressure-treated timber bridge typically requires minimal maintenance in order to achieve its projected life expectancy. Our accurate fabrication details allow the bridge members to be fabricated before pressure treatment, thus the initial pressure-treating process provides a comprehensive, protective envelope for the wood.

The following guidelines can be used to further enhance the protections already implemented in a Western Wood Structures timber bridge.

- 1. A timber bridge is designed to provide air movement around the timber members, which works naturally to reduce moisture. Moisture control is essentially a common sense method of identifying and taking corrective action against sources of moisture, This includes routing the drainage patterns of the approach roadways to channel water away from the bridge. Dirt and debris can trap and retain moisture, and should be removed periodically.
- 2. All nuts and bolts should be checked and tightened after the first year of service, as necessary. Thereafter, the bridge should be visually inspected on an annual basis.
- 3. Virtually all bridges designed by Western Wood Structures are pressure-treated, providing a long and useful service life. during the course of several years, as the color of the bridge fades to a driftwood gray, be assured that the effectiveness of the treatment continues.

Following these simple recommendations will provide a long service life for your Western Wood Structures timber bridge. If you need further information, please contact me at (800) 547-5411, or e-mail me at: jagidius@westernwoodstructures.com.

Glulam Deck Rough Sawn Finish (Western Wood Structures, Inc.)

Glulam Deck Rough Sawn Finish Detail (Western Wood Structures, Inc.)

Phone: 414-445-8989 www.ironwoods.com

Designers, manufacturers and their customers have long recognized the aesthetic, life cycle performance and environmental benefits associated with naturally durable hardwoods like Iron Woods® Ipe in bridge construction.

A stream anchor from the Margarita was found with a well-preserved wooden stock. An analysis by Forest Products Laboratories of the U.S. Department of Agriculture showed that it was made of a wood known as ipe or lapacho. On its crown are several well-preserved inscriptions: the date, 1618, and a foundry mark.

140 years – That's Durability

An environmentally superior alternative to Treated Wood, PVC or Composites... products carrying the 'Green By Nature™ 'Build with Conscience' Certificate of Compliance meet a specific set of Controlled Wood, Chain of Custody, Life Cycle Analysis and Due Diligence criteria that support environmental sustainability initiatives as follows....

All of the material carrying the Green By Nature Certificate of Compliance have been verified as being, legally harvested, transported, exported, imported and documented in compliance with all country of origin, international and domestic laws, rules, regulations and treaties pertaining to the fair and legal trade of forest products including but not limited to the U.S. Department of Agriculture Lacey Act, ITTA (International Tropical Timber Trade Agreement), CITES (Convention On The International Trade of Endangered Species), and U.S. Buy American Act as per Green By Nature Controlled Wood Chain Of Custody Policies and Procedures.

Additionally, material carrying the Green By Nature Certificate of Compliance, are derived from a naturally occurring, renewable and sustainable resource base and are harvested from forests that have not been converted to plantations or where civil rights are violated. These materials are 100% organic and grown without the use of genetic modification or chemical fertilization and are regenerated naturally or by seeding and replanting. The natural service life of these materials exceeds their natural growth cycle. These materials trap and store carbon and they are able to be reclaimed, reused or recycled. These materials do not require for service any petroleum based or inorganic chemical treatments adhesives or coatings. These materials do not require for service any specialized handling storage or disposal procedures and generate zero post-industrial or post-consumer non-biodegradable waste. These materials are also safe for human and animal contact and meet Low VOC emission standards and meet International Building Code and International Residential Code requirements for naturally durable wood.

The following is a summary of technical information designed to assist in the material selection and specification process.

Technical Data - Iron Woods® Ipe

Features	Iron Woods® Ipe						
Composition	Composition Naturally Durable Hardwood Untreated						
Species	Tabebuia spp. (Lapacho Group)						
Surface	Dressed / Profiled / Roughsawn						
Color	Natural						
Installation	Stainless Steel Fasteners						
Max overhand beyond joist	6"						
Weight per net bf AD 18%+ (avg)	5.5 - 6 lbs						
Weight per net bf KD 18% - (avg)	5 - 5.5 lbs						
Lengths	To 20'						
Property Description	ASTM Standard	Iron Woods® Ipe					
Modules of Elasticity	ASTM D-143	3145000 psi					
Bending Strength	ASTM D-143	22.475 psi					
Compression Parallel to Grain	ASTM D-143	13,140 psi					
Compression Perpendicular to Grain	ASTM D-143	3,595 psi					
Shear Parallel to Grain	ASTM D-143	2,290 psi					
Screw Pull Out		Avg. 1102 lbs Max Load					
Coefficient of Friction - Leather	ASTM C1028-89	Dry55 FP / Wet .79 FP (ADA Compliant)					
Coefficient of Friction - Neolite	ASTM C1028-89	Dry73 FP / Wet .69 FP (ADA Compliant)					
Surface Burning	ASTM E-84 (1989)	NFPA Class A, UBC Class 1					
Flame Spread (20 minutes)	ASTM E-84 (1989)	0					

TIMBER SO HOLDINGS Phone: 414-445-8989 www.ironwoods.com

Flame Spread (10 minutes)	ASTM E-84 (1989)	5
Smoke Developed (10 minutes)	ASTM E-84 (1989)	3
Fuel Contribution (10 minutes)	ASTM E-84 (1989)	0
Acute Inhalation	NYS Modified Pittsburg Protocol NYSUFPBC, Art 15, Part 1120,9 NYCRR	LC 50 0f 63.60g.
Combustion Toxicity Test	1120	Pass (19.7g or greater)
Surface Burning Calculated Flame Spread (10	ASTM E84 (2007)	NFPA Class B
minutes)	ASTM E84 (2007)	33.37
Flame Spread Index	ASTM E84 (2007)	35
Calculated Smoke Developed	ASTM E84 (2007)	273.3
Smoke Developed Index	ASTM E84 (2007)	250
Additional Compliance Fire		
City Of NY Dept. of Buildings	Fire Retardant Wood Code Sections 27-328	MEA # 220-01-M (Approved)
San Francisco Building Code CalFire Wildlife Urban Interface	Code Section 1511.5 (rooftop decks)	(Approved)
Areas	Code Section Chapter 7A (CSFM 12-7A-4)	(Approved)
Materials and Construction Methods	Exterior Wildlife Exposure: Decking	
International Building Code	Fire Resistant Wood	(Compliant)
International Residential Code	Fire Resistant Wood	(Compliant)
Additional Compliance Technical		
International Building Code	Naturally Durable Wood	(Class 1 / Compliant)
International Residential Code	Naturally Durable Wood	(Class 1 / Compliant)

Phone: 414-445-8989 www.ironwoods.com

$\overline{\underline{IRON WOODS}}$

CUMARU

IRON WOODS[®] Cumaru

"Iron Woods... Its Only Natural"

Species: Dipteryx Odorta

Common names: Cumaru, Brazilian Teak, Tonka

General Characteristics: Heartwood is reddish-brown to light yellowish-brown. Sapwood is distinct and narrow. It has a low to medium luster with a fine texture and an interlocking grain. Cumaru has a waxy or oily feel; and though it has no distinctive taste, it may have a vanilla-like odor. It is rated as easy to air season with a slight tendency to check and with moderate warping.

Durability: The timbers have a reputation for being very durable.

Working Properties: Slightly abrasive, responds

well to planing and other machining operations.

Good nailing, screwing and gluing properties.

Uses: Common applications include heavy construction, decking, dock fenders, flooring, railroad crossties and tool handles.

Cumaru (Diperyx odorata)

Similar in appearance to Ipe, it can at times be difficult to differentiate to the less trained eye. Cumaru does however have a more coarse and interlocking grain which results in a slightly lower dimensional stability requiring Kiln-drying in dimensions in under 2" nominal in both storage and application. Cumaru is currently being used heavily in the commercial boardwalk industry in 2x4 and 2x6 decking as a lower cost alternative to IPE and where marine borers is not an issue.

Strength & Durability

Cumaru is a golden to reddish brown species of tropical hardwood with similar technical properties to lpe with exception of its resistance to marine borers.

How does Iron Woods[®] Cumaru compare to other lumber and decking products?

	<u>Cumaru</u>	CCA-Treated Pine	Composite/PVC Decking
Туре	Hardwood	Softwood	Plastic Wood
Maintenance	Low	High	Low
Decay Resistance	High	Varies	Varies
Termite Resistance	High	Varies	Varies
Strength	High	Medium	Low
Movement in Service	Medium-Low	High	High
Fire Rating Class	High	Varies	Low
Weight per cu. ft.	67lbs.	35lbs.	60 to 64lbs.
Bending Strength	22,400	9,900 - 14,500	1,423 - 4,500
E-modulus	3,010,000	1,170,000 - 1,510,000	175,000 to 480,000
Shear Strength	2,395	1,370	561 - 1,010
Hardness	3,340	690	940 - 1,390

Cumaru

Availability

Cumaru is sold in two varieties: yellow and red and is typically sold mixed. Cumaru is best used in applications such as commercial decking, boardwalks, bridges, benches and exterior construction.

Decking – 1x4, 1x6, 5/4x6, 2x4, 2x6

Timbers – up to 12x12 by special order only.

All other dimensions up to 12x12 clear of heart center are special order only.

Finishing

We recommend coating Cumaru to assist the acclimation process and reduce checking. For best performance, coat all four sides and the ends of each board before installation. Use high-quality penetrating oil or water-based exterior sealers that contain mildewcides, fungicides, and UV inhibitors. Ask your local dealer about factory finishing. "See Installation Guide for Pre Installation Handling and Storage Requirements"

Green by Nature

Green by Nature products meet a specific set of Life Cycle environmental criteria defined as:

- * Product derived froma naturally occuring, renewable and sustainable resources.
- * Not endangered or at risk as per CITES (Convention On the International Trade of Endangered Species)
- * Not harvested from forest areas where traditional or civil rights are violated, converted for plantations or non-forest use.
- * Harvested legally and sourced in compliance with all international laws and regulations pertaining to the trade of plant products and more specifically in U.S. Department of Agriculture "Lacey Act Compliant".
- * 100% organic, grown without the use of genetic modification or chemical fertilization.
- * Service life exceeds natural growth cycle, sequesters and stores carbon throughout its life cycle.
- * Generates zero post industrial and post consumer non-biodegradable waste.
- * Does not require for service, any specialized handling, storage or disposal procedures. Generates zero post industrial and post consumer non-biodegradable waste.
- * Does not require petroleum based or inorganic chemicals treatments,

To learn safe for human and animal contact and meets low VOC emmission standards.

more about Green By Nature Certification go to www.greenbynature.com

www.ironwoods.com © 2012 IPE is a product of Timber Holdings USA. 414-445-8989

City of Spo Cost Estin	okane Pedestrian Bridges nates for Bridge Improvements Based on the 2014 KF	PFF Inspection and Analy	sis Recommendatio	ns		
Pridao No		Trianglo Trucc	Pridao			
Bridge Length and Width (feet)		172	20			
Recomme	endations for Improvements - Include:		Deck Replacemen	t		
Ontion 1	Cast in Place Concrete Deck					
Item no	Item Description	Cost Unit	Quantity	Unit Cost		Item Cost
1	Existing Rail Remove and Re-install	LF	344	35	Ś	12.040
2	Remove Existing Deck	SF	3440	4	Ś	13.760
3	New Deck	SF	3440	25	Ś	86.000
4	Misc	15	1	25000	Ś	25,000
	Total	25	1	23000	Ś	136 800
Option 2 -	Precast Concrete Panels				Ŷ	130,000
Item no	Item Description	Cost Unit	Quantity	Unit Cost		Item Cost
1	Existing Rail Remove and Re-install	LF	344	35	\$	12,040
2	Remove Existing Deck	SF	3440	4	\$	13,760
3	New Deck	SF	3440	30	\$	103,200
4	Misc	LS	1	25000	Ś	25.000
-	Total				\$	154,000
Option 3 -	Glulam Deck Panels/Ironwood Deck					
Item no	Item Description	Cost Unit	Quantity	Unit Cost		Item Cost
1	Existing Rail Remove and Re-install	LF	344	35	\$	12,040
2	Remove Existing Deck	SF	3440	4	\$	13,760
3	New Deck	SF	3440	35	\$	120,400
4	Misc	LS	1	25000	\$	25,000
	Total				\$	171,200
Option 4 -	Timber Deck Planks					
Item no	Item Description	Cost Unit	Quantity	Unit Cost		Item Cost
1	Existing Rail Remove and Re-install	LF	344	35	\$	12,040
2	Remove Existing Deck	SF	3440	4	\$	13,760
3	New Deck	SF	3440	17	\$	58,480
4	Misc	LS	1	25000	\$	25,000
	Total				\$	109,280
-		100/	(af anti-n 2)		ć	45 400
5		10%	(of option 2)		Ş	15,400
6	Design, Permits, Survey	20%	(of option 2)		Ş	30,800
/		13%	(of option 2)		Ş	19,250
8	Taxes	8%	(of option 2)		Ş	12,320
9	Contingency	30%	(of option 2)		Ş	46,200
10	Excalation (1 year)	3%	(of option 2)		Ş	4,620
	Agency Project Development & Mingmt.	5%	(of option 2)		\$	7,700
	lotal				Ş	136,290
	Option 1 Total Project Cost (2015)				\$	273,090
	Option 1 Square Foot Cost - (\$/SF)				\$	79
	Option 2 Total Project Cost (2015)				\$	290,290
	Option 2 Square Foot Cost - (\$/SF)				\$	84
	Option 3 Total Project Cost (2015)				\$	307,490
	Option 3 Square Foot Cost - (\$/SF)				Ś	89
	Option 4 Total Project Cost (2015)				\$	245,570
	Option 4 Square Foot Cost - (\$/SF)				\$	71

Nov-14

*Ironwood Deck cost is comparable to glulam deck panels

APPENDIX C

LOAD RATING RESULTS AND CALCULATIONS

Structural Analysis – Load Rating Summary

LRFR Bridge Rating Summary

Strength I – Rating Factors (RF):

	Peo	lestrian	Vehicle		
	Inventory Operating		Inventory	Operating	
Deck (Moment) RF	5.18 6.72		0.16	0.21	
Controlling Point	Deck, Bet	ween Stringers	Deck, Between Stringers		
Steel (Axial) RF	1.25 1.62		1.08	1.40	
Controlling Point	Dia	agonals	Stringers		

Maximum Wheel Live Load:

Inventory = 0.16*8,000 lb = 1268 lb Operating = 0.21*8,000 lb = 1643 lb

Pedestrian = 90 psf uniform distributed load

Vehicle = H-10 Truck

(16,000 lb. front axle, 4,000 lb. rear axle, 14' axle spacing)

Figures C3.1-1 and C3.1-2 from the *LRFD Guide Specifications for the Design of Pedestrain Bridges* (December 2009) give a visual representation of the uniform pedestrian live load.

Figure C3.1-1-Live Load of 50 psf

Figure C3.1-2-Live Load of 100 psf

Structural Analysis - Load Rating

Design Parameters:

Steel

Yield Stress, fy = 50 ksi Modulus of Elasticity, E = 29,000 ksi

Timber Deck Pine G = 0.5 $\sigma = 8.8 \text{ psf}$

Dead Loads

Superstructure self weight Railing (SAP2000 Load Combination – Dead Envelope)

Live Loads

Pedestrian Uniform Load = 90 psf (SAP2000 Load Combination – Pedestrian Envelope) Vehicle Load = 20,000 lb H-10 Truck (SAP2000 Load Combination – Moving Vehicle Envelope) Impact is not included Pedestrian and Vehicle Loads do not act concurrently

Analysis Methods:

The bridge geometry and section properties were modeled in SAP2000 based on the "As Built" drawings. These drawings showed that tube members were used for the diagonals, however during the inspection these members were found to be wide flange beams. Measurements were taken in the field to determine the sizing of the diagonals. The moment, shear, and axial demands due to dead loads and live loads were exported from SAP2000 to Excel. The moment, shear, and axial capacities were calculated in Excel. The Strength I rating factors were calculated in Excel using the peak demands in each element type.

The visual bridge inspection completed on August 14, 2014 found the deck to be in poor condition. All other superstructure components were shown to be in good condition. The condition rating factor, ϕ_c , is equal to 1.0 for good members and 0.85 for the poor deck. The system rating factor, ϕ_s is equal to 1.0 for the deck due to its redundant nature, but 0.85 for all other members.

The Strength I Load Rating checks flexure, shear, and axial capacities, as well as combined concurrent moment and axial capacity. Each member except the deck was checked individually and compared to the demands given in the SAP2000 model. The deck demands from the SAP2000 model were not used as these demands were instead calculated in Excel.

Triangle Truss Bridge Undeformed

Triangle Truss Bridge Extruded View

Triangle Truss Bridge Dead Load Axial Force

Triangle Truss Bridge Pedestrian Moment

Triangle Truss Bridge Vehicular Shear

Triangle Truss Load Rating (LRFR Method)

Timber Plank Decking			G	0.55		NDS Tabl	e 11.3.2A	
Pine				Ywater	62.4 pcf			
	W _{plank}	7.375	5 in	Ytimber	34.3 pcf			
d _{plank} 3.375 in		σ_{timber}	9.65 <i>psf</i>					
Check tim	ber planks a	is simple sp	ans betwee	en steel stringers				
	Stringer Sp	pacing		L _{c-c}	6 <i>ft</i>			
	Nailer Bea	m		b_{beam}	5.5 in			
	Clear Spac	ing		L_{clear}	5.54 <i>ft</i>			
Dead Load	ls	Self Weigl	nt of deck is	s only dead load				
	Weight	W _{deck} =	$w_{plank}^*\sigma_{tin}$	_{nber} =	5.93 <i>plf</i>			
	Moment	M _{deck} =	W*L ² /8 =		22.8 lb-ft	t		
	Shear	V _{deck} =	W*L/2 =		16.4 <i>lb</i>			
Live Loads	5	Pedestria	n and Vehic	cular loads act sep	perately			
	<u>Pedestriar</u>	<u>n:</u>	PL	90 <i>psf</i>		AASH	TO LRFD Ped B	ridge 3.1
		Weight	W _{PL} =	PL*w _{plank} =	55.3 <i>plf</i>			
		Moment	M _{PL} =	$W^{*}L^{2}/8 =$		212 <i>lb-ft</i>		
		Shear	V _{PL} =	W*L/2 =		153 <i>lb</i>		
	Vehicular:		LL	H10 Truck		AASH	TO LRFD Ped B	ridge 3.2
			wheel 1 wheel 2	8 k 2 k		(Use n	e maximum wheel load)	
		for planks	under 10"	wide, reduce wh	wide, reduce wheel load by w plank/		AASHTO	4.6.2.1.3
			W_{wheel}	5900 <i>lb</i>				
		Weight	distribute	wheel load over	20" tire wic	ith	AASHTO	3.6.1.2.5
			W _{LL} =	W _{wheel} / 20" =		3540 <i>plf</i>		
		Moment	place whe	eel load at midspa	an of plank			
			$R = W_{whee}$	₁ /2 =	2950 <i>lb</i>	reactio	on at stringer	
			a = (L-20")/2 =	1.94 <i>ft</i>			
			M _{LL} =	$R^*(a+R/2W_{LL}) =$:	6945 <i>lb-ft</i>		
		Shear	place whe	eel load at distand	ce from sup	port = min(3d	, 1/4L)	AASHTO
			3d	0.844 <i>ft</i>				4.6.2.2.2
			1/4L	1.385 ft				
			b = L - mii	n(3d, 1/4L) =		4.70 <i>ft</i>		
			V _{LL} =	W _{wheel} *b/L =		5002 <i>lb</i>		

Capacity

M oment	÷			
$\Phi M_n = \Phi$	_ DF _b *S*C _L			AASHTO 8.6.2-1
	$\Phi_{flexure}$		0.85	AASHTO 8.5.2.2
	CL		1	AASHTO 8.6.2
	$S = b_{plank} * d_{plank}$	$^{2}/6 =$	14.0 in ³	
	$F_b = F_{bo} * C_{KF}$	*C _M *C _F *C _{fu} *C	$_{i}^{*}C_{d}^{*}C_{\lambda}$	AASHTO 8.4.4.1
	F _{bo}	1.2 <i>ks</i>	i	AASHTO Table 8.4.1.1.4-1 - No. 1
	C _{KF}	2.94		AASHTO 8.4.4.2 - format conversion factor
	C _M	0.85		AASHTO 8.4.4.3 - wet service factor
	C _F	1		AASHTO 8.4.4.4 - size factor
	C _{fu}	1.05		AASHTO 8.4.4.6 - flat use factor
	Ci	0.8		AASHTO 8.4.4.7 - incising factor
	C _d	1.15		AASHTO 8.4.4.8 - deck factor
	$C_{\lambda \text{ (Str-I)}}$	0.8		AASHTO 8.4.4.9 - time effect factor
	F _b =	2.32 <i>ks</i>	i	
ΦM _n =	2299	lb-ft		
<u>Shear</u>				
$\Phi V_n = \Phi$	F _v *b*d/1.5			AASHTO 8.7-2
	Φ_{shear}	0.75		AASHTO 8.5.2.2
	$F_v = F_{vo} * C_{KF}$	$C_M C_i C_i C_\lambda$		AASHTO 8.4.4.1
	F_{vo}	0.175 ks	i	AASHTO Table 8.4.1.1.4-1 - No. 1 & Btr
	C _{KF}	3.33		AASHTO 8.4.4.2 - format conversion factor
	C _M	0.97		AASHTO 8.4.4.3 - wet service factor
	Ci	0.8		AASHTO 8.4.4.7 - incising factor
	$C_{\lambda \text{ (Str-I)}}$	0.8		AASHTO 8.4.4.9 - time effect factor
	F _v =	0.36 <i>ks</i>	i	
ΦV _n =	4507	lb		

Rating Factors

$$RF = \frac{(C - \gamma_{DC}DC - \gamma_{DW}DW + /- \gamma_{P}P)}{\gamma_{LL}LL(1+IM)}$$
 AASHTO MBE 6A.4.2.1-1

$C_{Str-I} = \Phi$	$_{c}\Phi_{s}\Phi_{n}R_{n}$		AASHTO MBE 6A.4.2.1-2
	$\Phi_c \Phi_s \ge 0.85$		AASHTO MBE 6A.4.2.1-3
	Φ_{s}	1	AASHTO MBE 6A.4.2.4
γ _{DC}	1.25		
$\gamma_{\text{LL inv.}}$	1.75		
γ _{LL op.}	1.35		
IM	0		AASHTO LRFD Ped. Bridge Manual 3.2

Max wheel load = $P_{wheel} * RF_{vehcile}$

Flexure

Condition	Good	Fair	Poor
Φ _c	1	0.95	0.85
C [lb-ft]	2299	2184	1954
RF pedestrian inventory	6.11	5.80	5.18
$RF_{pedestrian operating}$	7.92	7.52	6.72
RF vehicle inventory	0.19	0.18	0.16
$RF_{vehicle operating}$	0.24	0.23	0.21
Max wheel load _(inv.) [lb]	1495	1419	1268
Max wheel load _(op.) [lb]	1938	1840	1643

<u>Shear</u>

Good	Fair	Poor
1	0.95	0.85
4507	4282	3831
16.7	15.9	14.2
21.7	20.6	18.4
0.51	0.49	0.44
0.66	0.63	0.56
4100	3894	3483
5315	5048	4514
	Good 1 4507 16.7 21.7 0.51 0.66 4100 5315	Good Fair 1 0.95 4507 4282 16.7 15.9 21.7 20.6 0.51 0.49 0.66 0.63 4100 3894 5315 5048

Triangle Truss Load Rating (LRFR Method)

Girders/Top Chords

L	172 <i>f</i> t	
Spacing	18 <i>ft</i>	
W _{trib.}	9.83 <i>ft</i>	
Floorbeam Spa	21.5 <i>ft</i>	

Size		0' <l<43': th="" w14x61<=""><th>61</th><th colspan="5">43'<l<midspan': th="" w14x74<=""></l<midspan':></th></l<43':>		61	43' <l<midspan': th="" w14x74<=""></l<midspan':>				
			A_g		$17.9 in^{2}$	Ag	21.8 in ²		
			b_{f}		10 in	b _f	10.1 in		
			t _f		0.645 in	t _f	0.785 in		
			r _{t AISC}		2.78 in	r _{t AISC}	2.82 in		
			r _{t AASH}	то	2.77 in	r _{t AASHTO}	2.80 in		
			d		13.9 in	d	14.2 in		
			D		12.6 in	D	12.6 in		
			D_{c}		4.41 in	D _c	4.42 in		
			t _w		0.375 in	t _w	0.45 in		
			S _x		92.1 in ³	S _x	112 in ³		
			Sy		21.5 in ³	Sy	26.6 in ³		
			Z _x		$102 in^{3}$	Z _x	126 in 3		
			Zy		32.8 in ³	Zy	40.5 in ³		
			l _x		640 in 4	I _x	795 in 4		
			l _y		107 in 4	l _y	134 in 4		
	F _{vc}	50	ksi						
	F _{vt}	50	ksi						
	F _{vf}	50	ksi						
	, F _{vw}	50	ksi						
	F _{vr}	35	ksi						
	E	29000	ksi						
	Rotation	36.87	0		(measured from ve	rtical, about the longitu	dinal axis)		
Dead Load	s		W14x	61	W14x74	(from SAP2000 Mod	del)		
	Moment	$M_{33 max}$		49.2	72.6 <i>k-in</i>				
	WOMENL	$M_{22 max}$		41.4	32.8 k-in				
	Shear	V_{max}		1.16	1.21 <i>k</i>				
	Axial	P _{max}		40.0	69.6 <i>k</i>	(compression)			
Live Loads		Pedestrian	and V	ehicu	lar loads act sepera	tely			

PL 90 *psf* Pedestrian:

Weight $W_{PL} = PL^* w_{trib.} = 885 \ plf$

			W14x61	W14x74		(from SAP2000 Model)
	Manaat	$M_{33 max}$	119.1	167.0	k-in	
	woment	$M_{22 max}$	93.0	63.7	k-in	
	Shear	V _{max}	2.61	2.48	k	
	Axial	P _{max}	97.3	168.5	k	(compression)
Vehicular:		LL	H10 Truck			AASHTO LRFD Ped Bridge 3.2
		wheel 1		8	k	
		wheel 2		2	k	
		wheel spa	cing	6	ft	
		axle spacir	ng	14	ft	
			W14x61	W14x74		(from SAP2000 Model)
	Moment	$M_{33 max}$	297.4	253.6	k-in	
	Woment	$M_{22 max}$	232.7	174.2	k-in	
	Shear	V_{max}	7.01	6.92	k	
	Axial	P_{max}	15.9	23.5	k	(compression)
<u>Local Buck</u>	ling Resista	ince_	W14x61	W14x74		AASHTO 6.10.8.2.2
$\lambda_f = b_{fc}/2t_{fc}$	=		7.75	6.43		AASHTO 6.10.8.2.2-3
$\lambda_{pf} = 0.38^{*}$	V(E/F _{yc}) =		9.15	9.15		AASHTO 6.10.8.2.2-4
$\lambda_{rf} = 0.56*$	/(E/F _{yr}) =		13.49	13.49		AASHTO 6.10.8.2.2-5
$\lambda_{f} < \lambda_{of} \rightarrow$	$F_{nc} = R_b * R_b$	*F _{vc}		AASHTO 6.	10.8.2.2-1	
, ,	$M_{nc} = R_{pc}^*$	M _{vc}		AASHTO A	5.3.2-1	
	$M_{vc} = F_{vc} * S$	S _x		AASHTO D	5.2	
	R _b	1		AASHTO 6.	10.1.10.2	
	R _h	1		AASHTO 6.	10.1.10.1 (constructability is not checked)
		W14v61	\\/1 <i>4</i> \774			
	M	4605	5600	k-in		
	D	6 305	6 315	in		ΔΔΣΗΤΟ D6 3 2
	- cp λ	0.505	873			AASHTO A6 2 1-3
	λ	93 31	80 03			ΔΔSHTO Δ6 2 1-2
	2D/t	33 63	. 00.00 70.00			7. GITTO / (G/2.1 Z
	2D /+ <)	, <u>,</u> →	Compact			
	R = N / N	$r_{pw(Dcp)}$ / = 7 / r_{pw} –	compact			
	ripc - ivip/iv	- _{yc} - _{- x} , 3 _x - 1.11	1.13			AASHTO A6.2.1-4 & A6.2.2-4
			. 1.15			

Capacity

		W14x61	W14x74			
	F _{nc} =	50	50	ksi		
	M _{nc} =	5100	6300	k-in		AASHTO D6.2
Lateral Tor	sional Buck	<u>ling</u>	W14x61	W14x74		AASHTO 6.10.8.2.3
L _b			21.5	21	5 <i>ft</i>	
$L_p = r_t^* V(E/$	′F _{yc}) =		5.58	5.	66 <i>ft</i>	AASHTO 6.10.8.2.3-4
$L_r = \pi^* r_t^* V($	(E/F _{yr}) =		20.95	21.	25 <i>ft</i>	AASHTO 6.10.8.2.3-5
$L_b > L_r \rightarrow$	$F_{nc} = F_{cr} \le F_{cr}$	₨ <mark>*₨</mark> *₣ _{vc}				AASHTO 6.10.8.2.3-3
\rightarrow	$M_{nc} = F_{cr} * S$	$S_{xc} \leq R_{pc} * M_{vc}$				AASHTO A6.3.3-3
-	<u>C</u> ,*R	*π ² *E				
F _{cr} =	(L _b	$/r_{t})^{2}$				AASHTO 6.10.8.2.3-8
	C _b = 1.75 -	1.05(M ₁ /M	₂) + 0.3(M ₁ /	$(M_2)^2 \le 2.3$	3	AASHTO A6.3.3-7
		W14x61	W14x74			
	M _{2 (veh.)} =	-40.9	-165.5	k-in	large	est moment at end of braced length
	M _{mid (veh.)} =	297.4	253.6	k-in	morr	nent at middle of braced length
	M _{0 (veh.)} =	-204.6	-165.5	k-in	smal	lest moment at end of braced length
	$M_{1(veh.)} = N$	/1 _{0 (veh.)} =				AASTHO A6.3.3-12
		-204.6	-165.5	k-in		
	C _{b (vehicle)} =	2.30	1.00			
		W14x61	W14x74			
	M _{2 (ped.)} =	97.8	127.1	k-in	large	est moment at end of braced length
	M _{mid (ped.)} =	119.1	167.0	k-in	morr	nent at middle of braced length
	M _{0 (ped.)} =	-68.4	112.4	k-in	smal	lest moment at end of braced length
	M _{1 (ped.)} = N	A _{0 (ped.)} =				AASTHO A6.3.3-12
		-68.4	112.4	k-in		
	C _{b (ped.)} =	2.30	1.06			
		W14x61	W14x74			
	F _{cr (vehicle)} =	76.4	34.2	ksi		
	$F_{cr(ped.)} =$	76.4	36.1	ksi		
	$2D_{cp}/t_w < \lambda$	$\rightarrow_{pw(Dcp)}$	Compact			
	$R_{pc} = M_p/N$	$I_{yc} = Z_x/S_x =$				AASHTO A6.2.1-4
		1.11	1.13			
		W14x61	W14x74			
	F _{nc} =	50.0	34.2	ksi		
	M _{nc} =	5100	3830	k-in		AASHTO D6.2

Tension Flo	ange Flexu	ral Resistanc	<u>e</u>				
$F_{nt} = R_h * F_{yt}$							AASHTO 6.10.8.3-1
$M_{nt} = R_{pt} * N$	И _{yt}						AASHTO A6.4-1
	$M_{yt} = F_{yt}^*$	S _x					AASHTO D6.2
		W14x61	W14x74				
	M _{yt}	4605	5600	k-in			
	$2D_{cp}/t_w < 1$	$\lambda_{pw(Dcp)} \rightarrow$	Compact				
	$R_{pt} = M_p/N$	$M_{yt} = Z_x/S_x =$					AASHTO A6.2.1-5
		1.11	1.13				
		W14x61	W14x74				
	F _{nt} =	50	50	ksi			
	M _{nt} =	5100	6300	k-in			AASHTO D6.2
Minimum I	Flexural Re	<u>sistance</u>					
ΦM _{n 33} = Φ	o _f *min(M _{nc}	,M _{nt})					
	$\Phi_{\rm f}$	1					AASHTO 6.5.4.2
		W14x61	W14x74				
	ΦM _{n 33} =	5100	3830	k-in			
Weak Axis	<i>Flexure</i>						AASHTO 6.12.2.2.1
$\lambda_{pf} = 0.038$	$*V(E/F_{yf}) =$		0.915	in			AASHTO 6.10.8.2.2-4
$\lambda_{rf} = 0.83*$	/(E/F _{yf}) =		20.0	in			AASHTO 6.10.8.2.2-5
		W14x61	W14x74				
$\lambda_f = b_f/(2t_f)$	=	7.75	6.43	in			AASTHO 6.12.2.2.1-3
$\lambda_{pf} < \lambda_f < \lambda_r$	$_{\rm f}$ \rightarrow						
	M _n = [1 - ($(1 - S_y/Z_y)((\lambda_f))$	- λ _{pf})/(0.45*	sqrt(E	/F _{vf})))]F _f	_{fy} Z _y	AASHTO 6.12.2.2.1-2
	$\Phi_{\rm f}$	1					AASHTO 6.5.4.2
		W14x61	W14x74				
	ΦM _{n 22} =	1284	1671	k-in			
<u>Unstiffened</u> $\Phi V_n = \Phi_v V_n$	<u>d Web She</u> α = Φ.CV.	ar Resistance	2				AASHTO 6.10.9.2
	Φ	1					AASHTO 6.5.4.2
	·		W14x61	W14x7	74		
	V _p = 0.58*	F _{yw} *D*t _w =	137.1	1	64.8 <i>k</i>		AASHTO 6.10.9.2-2
	D/t _w		33.6		28.1		
	k		5		5		
	1.12*√(E*	k/F _{yw}) =	60.3		60.3		
	if D/t _w < 1	12*√(E*k/F _y	_{/w}) → C=1				
	С		1		1		
		W14x61	W14x74				
	ΦV _n =	137.1	164.8	k			

<u>Tensile Re</u>	<u>istance</u>				AASHTO 6.8.2.1
$\Phi P_n = \Phi_y^*$	F _y *A _g				
	Φγ	0.95			AASHTO 6.5.4.2
		W14x61	W1	4x74	
	ΦP _n =	850		1036 <i>k</i>	
Compress	ion Resistan	се			AASHTO 6.9.4.1.1
К	0.75				AASHTO 4.6.2.5
Φ _c	0.9				AASHTO 6.5.4.2
_	π²E*A _σ				
P _e =	$(K*I/r_s)^2$				AASHTO 6.9.4.1.2-1
$P_o = QF_yA_g$	5				AASHTO 6.9.4.1.1
	W14x61	W14x74			
k	0.	56			AASHTO Table 6.9.4.2.1-1
b	5	5.05	in		
t	0.645	0.785	in		
b/t	7.75	6.43		→ Nonslender	
k*√(E/F _y)	13	3.5		, nonsiender	
Q	1.0	1.0			AASHTO 6.9.4.2
	W14x61	W14x74			
Pe	1057	1325	k		
Po	895	1090	k		
$P_e/P_o =$	1.18	1.22			
$P_{e}/P_{o} > 0.4$	14 →				
	P _n = (0.658	B^(P _o /P _e))P _o			AASHTO 6.9.4.1.1-1
		W14x61	W1	4x74	
	P _n =	628		773 k	
		W14v61	\\\/1	1~71	
	<u> ሰ</u> –	565	AA T	605 V	
	Ψ'n =	202		090 K	

Rating Factors

$RF_{general} =$	<u>(C - γ_{DC}DC - γ_{DW}DW +/-</u>	γ _Ρ Ρ)	AASHTO MBE 6A.4.2.1-1		
	$\gamma_{LL}LL(1+IM)$		(Impact for vehicles only)		
	$C_{Str-I} = \Phi_c \Phi_s \Phi_n R_n$		AASHTO MBE 6A.4.2.1-2		
	$\Phi_c \Phi_s \ge 0.85$		AASHTO MBE 6A.4.2.1-3		
	Φs	0.85	AASHTO MBE 6A.4.2.4		

if P_u/P_r > 0.2 :

$$RF_{M+A} = \frac{1 - \gamma_{DC}[P_{DC}/F_r + (8/9)*\delta_b^*(M_{DC}/M_r)]}{\gamma_{LL}[P_{LL+IM}/P_r + (8/9)*\delta_b^*(M_{LL+IM}/M_r)]}$$
AASHTO MBE Appendix H6A pg. 6-
73

kpff Consulting Engineers

	δ _b =		= -	1 (> 1.0	
		1-Ρ _u /ΨΡ _e		Τ-(Ϋ́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́́	ος της γιις	ε		
	C _m	1				AASHTO	4.5.3.2.2b, co	onservative
	P _e =	π²El				AASHTO 4.	5.3.2.2b-5	
		(K*l _u) ²					6 9 5	
	K	0.75 21 F (-			AASHTO 4.	6.2.5	
	и Ф	21.5 J	ι				F 4 0	
	Ψ_{comp}	0.9	N11271			AASHTU 6.	5.4.2	
	ΦP _o strong ovic	4403	5469 k	ć				
	$\Phi P_{e \text{ weak axis}}$	736	922 k	(
	Ydc	1.25						
	$\gamma_{LL inv.}$	1.75						
	YLL op.	1.35						
	IM	0			AASHTO LI	RFD Ped. Bri	dge Manual	3.2
		W14>	k 61	W14	x74			
		Strong	Weak	Strong	Weak			
	$\delta_{b \text{ ped. inv.}}$	1.1	1.43	1.1	2.08			
	$\delta_{b \text{ ped. op.}}$	1.0	1.33	1.1	1.75			
	$\delta_{b \text{ vehicle inv.}}$	1.0	1.12	1.0	1.21			
	$\delta_{b \text{ vehicle op.}}$	1.0	1.11	1.0	1.19			
Biovial E	lovuro + Avial			W14v61			W14v74	
DIAXIAI F	iexule + Axiai	Condition	Good	Fair	Poor	Good	Fair	Poor
		Φ	1	0.95	0.85	1	0.95	0.85
		C _{axial} [k]	480	480	480	591	591	591
		С _{мзз} [k-in]	4335	4335	4335	3255	3255	3255
		C _{M22} [k-in]	1091	1091	1091	1420	1420	1420
	RF _{pede}	strian inventory	1.39	1.39	1.39	1.05	1.05	1.05
	RF _{pede}	strian operating	1.85	1.85	1.85	1.42	1.42	1.42
	RFv	ehicle inventory	1.56	1.56	1.56	1.87	1.87	1.87
	RF _v	ehicle operating	2.03	2.03	2.03	2.45	2.45	2.45
Shear		Condition	Good	<u>W14x61</u> Eair	Poor	Good	<u>W14x/4</u> Eair	Poor
		Φ	1	0.95	0.85	1	0.95	0.85
		C [k]	- 117	117	117	140	140	140
	RF pede	strian inventorv	25.2	25.2	25.2	31.9	31.9	31.9
	RF _{pede}	strian operating	32.7	32.7	32.7	41.3	41.3	41.3
	RFv	ehicle inventorv	9.39	9.39	9.39	11.4	11.4	11.4
	RFv	, ehicle operating	12.2	12.2	12.2	14.8	14.8	14.8

Triangle Truss Load Rating (LRFR Method)

Stringers

Jungers							
	L	21.	5 <i>ft</i>		Brad	es frame in at	1/3 or 2/3 length
	Spacing		6 <i>ft</i>				
	W _{trib.}		6 <i>ft</i>				
	Size	W10x17				F _{yc}	50 <i>ksi</i>
		b _f		4.01 in		F _{yt}	50 ksi
		t _f		0.33 in		F _{vw}	50 <i>ksi</i>
		r _{t AISC}		1.04 in		, F _{vr}	35 <i>ksi</i>
		r _{t AASHTO}		1.06 in		E	29000 ksi
		d		10.1 in			
		D		9.44 in			
		D _c		3.30 in	(Ass	uming 35% of	web is in compression)
		t _w		0.24 in			
		S _x		16.2 in ³			
		Z _x		18.7 in ³			
Dead Load	s						
	Moment	M _{max}		51.0 k-in		<i>(</i> 6 –	
	Shear	V_{max}		0.79 <i>k</i>		(from S	AP2000 Model)
Live Loads		Pedestria	n and V	ehicular lo	hads act sen	erately	
Live Louds	Pedestrian	:	PL		90 psf	crucery	AASHTO LRFD Ped Bridge 3.1
		Weight	W _{PL} =	PL*w _{trib.} =	=	540 <i>plf</i>	Ū
		Moment	Mmax		374.4 k-in		
		Shear	V _{max}		5.81 <i>k</i>		(from SAP2000 Model)
	Vehicular [.]			H10	Truck		AASHTO I RED Ped Bridge 3.2
			whee	11		8 <i>k</i>	
			whee	12		2 <i>k</i>	
			whee	l spacing		6 <i>ft</i>	
			axle s	pacing		14 <i>ft</i>	
		Moment	\mathbf{M}_{\max}		461.5 <i>k-in</i>		(from SAP2000 Model)
		Shear	V_{max}		8.69 <i>k</i>		
Capacity	Local Buck	ling Resiste	ance				AASHTO 6.10.8.2.2
	$\lambda_{\rm f} = b_{\rm fc}/2t_{\rm fc}$	=			6.08		AASHTO 6.10.8.2.2-3
	$\lambda_{\rm pf} = 0.38^{*}$	V(E/F _{vc}) =			9.15		AASHTO 6.10.8.2.2-4
	λ _{rf} = 0.56*1	/(E/F _{vr}) =			13.49		AASHTO 6.10.8.2.2-5

kpff Consulting Engineers

$\lambda_{f}\!<\!\lambda_{pf}\!\rightarrow$	$F_{nc} = R_b * R_h * F_{yc}$			AASHTO 6	.10.8.2.2-1		
\rightarrow	$M_{nc} = R_{pc}^* M_{yc}$			AASHTO A	6.3.2-1		
	$M_{yc} = F_{yc} * S_x$			AASHTO D	6.2		
	R _b	1		AASHTO 6	.10.1.10.2		
	R _h	1		AASHTO 6	.10.1.10.1 (co	onstructab	ility is not checked)
	M _{yc}	810	k-in				
	D_{cp}	4.72	in		AASHTO D6	.3.2	
	λ_{rw}	137.3			AASHTO A6	.2.1-3	
	$\lambda_{pw(Dcp)}$	84.67			AASHTO A6	.2.1-2	
	$2D_{cp}/t_w$	39.33					
	$2D_{cp}/t_w < \lambda_{pw(Dcp)}$	\rightarrow	Compact				
	$R_{pc} = M_p / M_{yc} = 2$	$Z_x/S_x =$	1.15	5	AASHTO A6	.2.1-4 & A	6.2.2-4
	F _{nc} =	50	ksi				
	M _{nc} =	935	k-in		AASHTO D6	.2	
Bracina	Che	ck brad	ing strongt	h of timber	deck planks		
$\frac{Drucing}{P_{br}} = 0.008$	3*M.*C./h.		(Required	brace stren	gth)		AISC 0.5.12
DI	h	9.77	in		(Distance b	etween fla	nge centroids)
	Cd	1			(For bendin	g single cu	rvature)
	M _r	871	k-in		(Factored m	noment wi	th LRFD factors)
	·				(,
P _{br} =	0.714 <i>k</i>						
$\Phi P_n = \Phi^* I$	⁻ c*Ag*Cp				AASHTO 8.8	3.2-1	
	$\Phi_{comp.}$	0.9			AASHTO 8.5	5.2	
	$A_{gactual}$	24.89	in ²				
	Deck condition	factor	2	0.5	5	(to reduce	strength)
	$A_{greduced}$	12.45	in²				
$F_c = F_{co} * C_k$	$_{KF}*C_{M}*C_{F}*C_{i}*C_{\lambda}$				AASHTO 8.4	1.4	
	F _{co}	1.45	ksi		AASHTO Ta	ble 8.4.1.1	.4-1 - No. 1
	C _{KF}	2.78		AASHTO 8	.4.4.2 - forma	at conversi	ion factor = $2.5/\Phi$
	C _M	0.8		AASHTO 8	.4.4.3 - wet s	ervice fact	for, \leq 4" thick
	C _F	1.05		AASHTO 8	.4.4.4-1, Size	Effect Fac	tor, 8" width & F _{co}
	C _i	0.8		AASHTO 8	.4.4.7 - incisi	ng factor	
	$C_{\lambda \text{ (Str-I)}}$	0.8		AASHTO 8	.4.4.9 - time	effect fact	or
	-	•	<i>,</i> .				
	⊦ _c	2.17	KSİ				

$C_p = (1+B)/2c - V(((1+B)/2c)^2 - B/c) \le 1$				AASHTO 8.8.2-2				
	K	cE	0.52		AASHTO 8.8.2			
	К		1		AASHTO 4.6.2.5 (assu	me pinned-pinned)		
	L		72 in		(Stringer spacing)			
	Le	e = KL =	72 in		AASHTO 8.8.2			
	E	o	1500 <i>ksi</i>		AASHTO Table 8.4.1.1	.4-1 - No. 1		
	E	$= E_o * C_M * C_i$			AASHTO 8.4.4.1-6			
		=	960 <i>ksi</i>					
	F	$_{cE} = K_{cE} * E * d^2 / L_e^2$	1	AASHTO 8.8.2-4				
		=	1.10 <i>ksi</i>					
	В	$= F_{cE}/F_{c} \le 1$			AASHTO 8.8.2-3			
		=	0.51					
	C		0.8		AASHTO 8.8.2, for sav	wn lumber		
	C		0.44					
	C ₁	p	0.44					
	ሰቦ	10.6 k						
	Ψī'n	10.0 K						
	$\beta_{br} = 1/\Phi^*(4^*)$	*M _r *C _d)/(L _b *h _o)		(Required	brace stiffness)	AISC A-6-6		
	Φ)	0.75					
	L)	172 in	(length be	tween steel braces)			
	β_{br}	2.77 k/in						
	k _{timber planks} = / =	A _{red.} *E/L 165.9 <i>k/in</i>		(timber sti	ffness)			

 $\Phi P_n \ge P_{br} \& k_{planks} \ge \beta_{br} \rightarrow Deck/nailer effectively braces stringers, LTB not considered$

Tension Flange Fl	exural Resistance		
$F_{nt} = R_h * F_{yt}$			AASHTO 6.10.8.3-1
$M_{nt} = R_{pt}^* M_{yt}$			AASHTO A6.4-1
M _{yt} =	$F_{yt}^*S_x =$	810 <i>k-in</i>	AASHTO D6.2
2D _{cp} /1	$t_w < \lambda_{pw(Dcp)} \rightarrow$ Comp	pact	
R _{pt} = 1	$M_p/M_{yt} = Z_x/S_x =$	1.15	AASHTO A6.2.1-5
F _{nt} =	50 <i>ksi</i>		
M _{nt} =	935 <i>k-in</i>		AASHTO D6.2
Minimum Flexuro	<u>ıl Resistance</u>		
$\Phi M_n = \Phi_f^* \min(M)$	I _{nc} ,M _{nt})		
$\Phi_{\rm f}$	1		AASHTO 6.5.4.2

ΦM_n = 935 *k-in*

AASHTO 6.10.9.2

AASHTO 6.5.4.2 AASHTO 6.10.9.2-2

Unstiffened Web Shear Resistance	2
$\Phi V_n = \Phi_v V_{cr} = \Phi_v C V_p$	
Φ, 1	
$V_{p} = 0.58 * F_{yw} * D * t_{w} =$	65.7 <i>k</i>
D/t _w	39.3
k	5
1.12*V(E*k/F _{yw}) =	60.3
if $D/t_w < 1.12*V(E*k/F_s)$	$_{yw}) \rightarrow C=1$
С	1
ΦV _n = 65.7	k

Rating Factors

RF =	<u>(C - γ</u>	_{DC} DC - γ _{DW} DW +/- γ _P P) γ _{LL} LL(1+IM)		AASHTO MBE 6A.4.2.1-1
	C _{Str-I} = Φ	$_{c}\Phi_{s}\Phi_{n}R_{n}$		AASHTO MBE 6A.4.2.1-2
		$\Phi_c \Phi_s \ge 0.85$		AASHTO MBE 6A.4.2.1-3
		Φ_{s}	1	AASHTO MBE 6A.4.2.4
	γ _{DC}	1.25		
	$\gamma_{\text{LL inv.}}$	1.75		
	YLL op.	1.35		
	IM	0		AASHTO LRFD Ped. Bridge Manual 3.2

Max wheel load = $P_{wheel} * RF_{vehcile}$

<u>Flexure</u>

Condition	Good	Fair	Poor
Φ_{c}	1	0.95	0.85
C [k-in]	935	888	795
RF pedestrian inventory	1.33	1.26	1.12
RF pedestrian operating	1.72	1.63	1.45
RF vehicle inventory	1.08	1.02	0.91
RF _{vehicle} operating	1.40	1.32	1.17

<u>Shear</u>

Condition	Good	Fair	Poor
Φ _c	1	0.95	0.85
C [k-in]	65.7	62.4	55.8
RF pedestrian inventory	6.37	6.05	5.40
RF _{pedestrian} operating	8.26	7.84	7.00
RF _{vehicle inventory}	4.25	4.04	3.61
$RF_{vehicle operating}$	5.51	5.23	4.67

Triangle Truss Load Rating (LRFR Method)

<u>Floorbeams</u>

FIGUIDEAL	115									
	L	18	ft							
	Spacing	21.5	ft							
	Stringer Sp	acing	6	5 ft						
	Size	Interior:	W10x39					Ends:	W18x50	
			Ag		11.5	in ²			Ag	14.7 in ²
			b _f		7.99	in			b _f	7.50 in
			t _f		0.53	in			t _f	0.57 in
			r _t		2.24	in			r _t	1.98 in
			d		9.92	in			d	18 in
			D		8.86	in			D	16.9 <i>in</i>
			D _c		3.10	in			D _c	5.90 in
			t _w		0.315	in			t _w	0.355 in
			S _x		42.1	in ³			S _x	88.9 in ³
			I _x		209	in ⁴			I _x	800 in 4
			Z _x		46.8	in ³			Z _x	101 in ³
	Fvc	50	ksi							
	F _{vt}	50	ksi							
	F _{vw}	50	ksi							
	F,,r	35	ksi							
	E	29000	ksi							
Dead Load	s		W10x39	W18	x50					
	Moment	M _{max}	129.8	3	80.06	k-in				
	Shear	V _{max}	1.89	Ð	1.23	k			(from SAP2	2000 Model)
	Axial	P _{max}	6.4	1	17.9	k		(compres	sion)	
		Dodoctrian	and Vahier	ularla	ade ae	tcon	oratoly	,		
LIVE LOOUS	Pedestrian	:	PL		90 aus	nsf	eratery	/	AASHTO LE	RED Ped Bridge 3.1
		Weight	P _{PL} = PL*A	trib. =			11.61	k	(two point	loads of this mag.)
				W10	x39	W18	8x50			
		Moment	M _{max}		841.0		421.6	k-in	10	
		Shear	V _{max}		11.68		5.86	k	(from SAP2	2000 Model)
		Axial	P _{max}		18.6		43.3	k	(compress	ion)
	Vehicular		Ц	H10	Truck				ΔΑ SHTO Γ	RED Ped Bridge 3.2
	<u></u>		 wheel 1				8	k		
			wheel 2				2	k		
			wheel spa	cing			6	ft		
			axle spaci	ng			14	ft		

		W10x39	W18x50	
Moment	M_{max}	617.4	626.2 <i>k-in</i>	(from SAP2000 Model)
Shear	V_{max}	8.58	8.70 <i>k</i>	
Axial	P_{max}	6.9	6.2 <i>k</i>	(compression)

Capacity

Local Buckling Resistance	W10x39 W18x50	AASHTO 6.10.8.2.2
$\lambda_{\rm f}$ = b _{fc} /2t _{fc} =	7.54 6.	58 AASHTO 6.10.8.2.2-3
$\lambda_{pf} = 0.38*V(E/F_{yc}) =$	9.15 9.	15 AASHTO 6.10.8.2.2-4
$\lambda_{rf} = 0.56* v(E/F_{yr}) =$	13.49 13.	49 AASHTO 6.10.8.2.2-5

$\lambda_{f} < \lambda_{pf} \rightarrow F_{nc} = R_{b} R_{h} R_{h} R_{h}$	yc	AASHTO 6.10.8.2.2-1
$\rightarrow M_{nc} = R_{pc} * M_{y}$	/C	AASHTO A6.3.2-1
$M_{yc} = F_{yc}^*S_x$		AASHTO D6.2
R _b	1	AASHTO 6.10.1.10.2
R _h	1	AASHTO 6.10.1.10.1 (constructability is not checked)

	W10x39 W	18x50	
M _{yc}	2105	4445 k-in	
D_{cp}	4.43	8.43 in	AASHTO D6.3.2
λ_{rw}	137.3		AASHTO A6.2.1-3
$\lambda_{pw(Dcp)}$	92.49	87.88	AASHTO A6.2.1-2
$2D_{cp}/t_w$	28.13	47.49	
$2D_{cp}/t_w < 2$	$\lambda_{pw(Dcp)} \rightarrow Co$	mpact	
$R_{pc} = M_p/N$	$M_{yc} = Z_x/S_x =$		۵۵ՏΗΤΟ ۵6 2 1-4 & ۵6 2 2-4
	1.11	1.14	///3/110//0.2.1 4 @//0.2.2 4

	W10x39 W	18x50	
F _{nc} =	50	50 <i>ksi</i>	
M _{nc} =	2340	5050 <i>k-in</i>	AASHTO D6.2

Lateral Torsional Buckling	W10x39 W2	18x50	AASHTO 6.10.8.2.3
L _b	6	6 <i>ft</i>	
$L_p = r_t * V(E/F_{yc}) =$	4.50	3.97 <i>ft</i>	AASHTO 6.10.8.2.3-4
$L_r = \pi^* r_t^* V(E/F_{yr}) =$	16.88	14.9 <i>ft</i>	AASHTO 6.10.8.2.3-5

 $L_p < L_b < L_r \rightarrow$

$F_{nc} = C_{b}[1-(1-F_{yr}/(R_{h}F_{yc}))((L_{b}-L_{p})/(L_{r}-L_{p}))]R_{b}R_{h}F_{yc} < R_{b}R_{h}F_{yc}$		AASHTO 6.10.8.2.3-2
$M_{nc} = C_{b}[1-(1-(F_{yr}^{*}S_{xc})/(R_{pc}M_{yc}))((L_{b}-L_{p})/(L_{r}-L_{p}))]R_{pc}M_{yc} < R_{b}$	_{pc} M _{yc}	AASHTO A6.3.3-2
$C_b = 1.75 - 1.05(M_1/M_2) + 0.3(M_1/M_2)^2 \le 2.3$	AASHTO 6.1	10.8.2.3-7

	١	W10x39	W18x50		
	M _{2 (veh.)} =	617.4	626.2	k-in	largest moment at end of braced leng
	M _{mid (veh.)} =	308.7	313.1	k-in	moment at middle of braced length
	M _{0 (veh.)} =	0.0	0.0	k-in	smallest moment at end of braced le
	$M_{1 (veh.)} = M_{0}$	(veh.) =			AASTHO A6.3.3-12
		0.0	0.0	k-in	
	C _{b (vehicle)} =	1.75	1.75		
	١	W10x39	W18x50		
	M _{2 (ped.)} =	841.0	421.6	k-in	largest moment at end of braced leng
	M _{mid (ped.)} =	420.5	210.8	k-in	moment at middle of braced length
	$M_{0 (ped.)} =$	0.0	0.0	k-in	smallest moment at end of braced le
	$M_{1 (ped.)} = M_0$) (ped.) =			AASTHO A6.3.3-12
		0.0	0.0	k-in	
	C _{b (ped.)} =	1.75	1.75		
	$2D_{cp}/t_w < \lambda_{pv}$	$_{v(Dcp)}$ \rightarrow	Compact		
	$R_{pc} = M_p / M_{yc}$	$_{c} = Z_{x}/S_{x} =$			AASHTO A6.2.1-4
		1.11	1.14		
	١	W10x39	W18x50		
	F _{nc} =	50	50	ksi	
	M _{nc} =	2340	5050	k-in	
<u>Tension I</u>	- Flange Flexural	Resistance	2		
$F_{nt} = R_h * F_h$	yt				AASHTO 6.10.8.3-1
$M_{nt} = R_{pt}$	*M _{yt}				AASHTO A6.4-1
	$M_{yt} = F_{yt}^*S_x$				AASHTO D6.2
	١	W10x39	W18x50		
	M _{yt}	2105	4445	k-in	
	$2D_{cp}/t_w < \lambda_{pv}$	$_{\rm v(Dcp)}$ \rightarrow	Compact		
	$R_{pt} = M_p / M_{yt}$	$= Z_x/S_x =$			AASHTO A6.2.1-5
		1.11	1.14		
	١	W10x39	W18x50		
	F _{nt} =	50	50	ksi	
	M _{nt} =	2340	5050	k-in	AASHTO D6.2
<u>Minimun</u>	n Flexural Resis	tance			
$\Phi M_n = \Phi$	[*] min(M _{nc} ,M _{nt}))			
	$\Phi_{\rm f}$	1			AASHTO 6.5.4.2
	Ň	N/10v30	\M/18v50		
	-	101070	VV 10/00		

Unstiffene	d Web She	<u>ar Resistance</u>		AASHTO 6.10.9.2	
$\Phi V_n = \Phi_v V_n$	$V_{\rm cr} = \Phi_{\rm v} {\rm CV}_{\rm p}$				
	Φ_v	1		AASHTO 6.5.4.2	
		W	/10x39 W	18x50	
	V _p = 0.58*	FF _{yw} *D*t _w =	80.9	173.6 <i>k</i>	AASHTO 6.10.9.2-2
	D/t _w		28.1	47.5	
	k		5	5	
	1.12*V(E*	$(k/F_{yw}) =$	60.3	60.3	
	if D/t _w < 1	12*√(E*k/F _{yw})	\rightarrow C=1		
	С		1	1	
	A 1	W10x39 W	/18x50		
	$\Phi V_n =$	80.9	1/3.6 <i>k</i>		
<u>Tensile Re</u>	<u>istance</u> E * A				AASHTO 6.8.2.1
$\Psi_n - \Psi_y$	' _ሃ ጥ _g መ	0.05			
	Ψ_{γ}	0.95			AA31110 0.3.4.2
		W10x39 W	/18x50		
	$\Phi P_n =$	546	698 k		
<u>Compress</u>	ion Resistar	nce		AASH	TO 6.9.4.1.1
К	0.75	5		AASH	TO 4.6.2.5
Φ_{c}	0.9	Ð		AASH	TO 6.5.4.2
D –	$\pi^2 E^* A_g$			ллсц	ΤΟ 6 0 / 1 2-1
r _e –	$(K*I/r_s)^2$			ААЗП	10 0.9.4.1.2-1
$P_o = QF_yA_{\mu}$	ţ			AASH	TO 6.9.4.1.1
	W10x39	W18x50			
k	C	0.56		AASH	TO Table 6.9.4.2.1-1
b	3.995	3.75 in			
t	0.530	0.570 in			
b/t	7.54	6.58	\rightarrow Nonsle	nder	
κ*ν(E/F _y)	1	.3.5			
Q	1.0	1.0		AASH	10 6.9.4.2
	W10x39	W18x50			
P _e	629	9 629 k			
Po	575	5 735 <i>k</i>			
$P_e/P_o =$	1.09	9 0.86			
$P_{e}/P_{o} > 0.4$	14 →			ллсц	TO 6 9 / 1 1-1
	P _n = (0.65	8^(P _o /P _e))P _o		ААЗП	10 0.3.4.1.1-1
		W10x39 W	/18x50		
	P _n =	392	451 <i>k</i>		

	W10x39	W18x50
ΦP _n =	353	405 <i>k</i>

Rating Factors

$$= \frac{(C - \gamma_{DC}DC - \gamma_{DW}DW + /- \gamma_{P}P)}{\gamma_{LL}LL(1+IM)}$$
AASHTO MBE 6A.4.2.1-1
$$C_{Str-I} = \Phi_{c}\Phi_{s}\Phi_{n}R_{n}$$
AASHTO MBE 6A.4.2.1-2
$$\Phi_{c}\Phi_{s} \ge 0.85$$
AASHTO MBE 6A.4.2.1-3
$$\Phi_{s}$$
1
AASHTO MBE 6A.4.2.4

RF_{M+A} =

RF

<u>1 - γ_{DC}[P_{DC}/F_r + (8/9)*δ_b*(M_{DC}/M_r)]</u> $\gamma_{LL}[P_{LL+IM}/P_r + (8/9)^*\delta_b^*(M_{LL+IM}/M_r)]$

AASHTO MBE Appendix H6A

AASHTO 4.5.3.2.2b, conservative

AASHTO 4.5.3.2.2b-5

AASHTO 4.6.2.5

AASHTO 6.5.4.2

$$\delta_{b} = \frac{C_{m}}{1 - P_{u}/\Phi P_{e}} = \frac{C_{m}}{1 - (\gamma_{DC}P_{DC} + RF^{*}\gamma_{LL}P_{LL})/\Phi P_{e}} > 1.0$$

k

C _m	1	
D –	π²EI	_
r _e –	(K*l _u) ²	-
К	0.75	
l _u	6	ft
Φ_{comp}	0.9	
	W10x39	W18x50
ΦP_{e}	18463	70671
γ _{DC}	1.25	
YLL inv.	1.75	
YLL op.	1.35	
IM	0	

W10x39 W18x50

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

 $\delta_{\text{b ped. inv.}}$

 $\delta_{\text{b ped. op.}}$

 $\delta_{\text{b vehicle inv.}}$

 $\delta_{\text{b vehicle op.}}$

AASHTO LRFD Ped. Bridge Manual 3.2

<u>Flexure</u>			<u>W10x39</u>			<u>W18x50</u>		
	Condition	Good	Fair	Poor	Good	Fair	Poor	
	Φ_{c}	1	0.95	0.85	1	0.95	0.85	
	C [k-in]	2340	2223	1989	5050	4798	4293	
	RF _{pedestrian} inventory	1.48	1.40	1.24	6.71	6.37	5.68	
	RF _{pedestrian} operating	1.92	1.82	1.61	8.70	8.25	7.37	
	RF _{vehicle inventory}	2.02	1.91	1.69	4.52	4.29	3.83	
	$RF_{vehicle operating}$	2.61	2.47	2.19	5.86	5.56	4.96	

Flexure + Axial			<u>W10x39</u>			<u>W18x50</u>	
	Condition	Good	Fair	Poor	Good	Fair	Poor
	Φ _c	1	0.95	0.85	1	0.95	0.85
	C _{axial} [k]	353	335	300	405	385	345
	C _{flex.} [k-in]	2340	2223	1989	5050	4798	4293
	RF _{pedestrian} inventory	1.40	1.33	1.17	2.92	2.77	2.45
	$RF_{pedestrian operating}$	1.82	1.72	1.52	3.79	3.59	3.18
	RF _{vehicle inventory}	2.06	1.94	1.72	4.21	3.98	3.53
	RF _{vehicle operating}	2.67	2.52	2.23	5.46	5.16	4.58

<u>Shear</u>		<u>W10x39</u>					<u>W18x50</u>			
	Condition	Good	Fair	Poor	Good	Fair	Poor			
	Φ _c	1	0.95	0.85	1	0.95	0.85			
	C [k]	80.9	76.9	68.8	174	165	148			
	RF pedestrian inventory	3.84	3.65	3.25	16.8	15.9	14.2			
	RF pedestrian operating	4.98	4.73	4.21	21.8	20.7	18.5			
	RF vehicle inventory	5.24	4.97	4.43	11.3	10.7	9.59			
	RF vehicle operating	6.79	6.44	5.74	14.7	13.9	12.4			

Triangle Truss Load Rating (LRFR Method)

Bottom Chord

	L	150.5	ft						
	Joint Spaci	ng	21.5	ft					
	Size	1 st 2 bays:	$2L8x8x^7/_{s}$			Middl	e 3 bays:	2L8x8x1 ¹ / ₈	
		,	Ag	26.	.6 in ²			Ag	33.6 in ²
			seperation	0.	.5 in			seperation	0.5 <i>in</i>
			r _t	3.5	4 in			r _t	3.59 in
								x _p	0.311 in
	Fy	50	ksi					L _{bolted con.}	50.75 in
	Fu	65	ksi					d _{bolts}	1.25 in
	E	29000	ksi						
Dead Load	ls		$2L8x8x^{7}/_{8}$	2L8x8x1 ¹	/ ₈	(f	rom SAP2	2000 Model)	
	Axial	P _{max}	152.4	203.	.8 k	(t	ension)		
Live Loads		Pedestrian	and Vehicu	ılar loads a	act sep [,]	erately			
	<u>Pedestrian</u>	<u>:</u>	PL	9	0 psf			AASHTO LRFE	Ped Bridge 3.1
				2L8x8x ⁷ / ₈	₃ 2L8x	8x1 ¹ / ₈		(from SAP200	0 Model)
		Axial	P _{max}	374.	.7	499.1 <i>k</i>		(tension)	
	<u>Vehicular:</u>		LL	H10 Truc	k			AASHTO LRFE) Ped Bridge 3.2
			wheel 1			8 <i>k</i>			
			wheel 2			2 k			
			wheel spa	cing		6 <i>f</i> t			
			axle spacir	ıg		14 <i>ft</i>			
				2L8x8x ⁷ / ₈	₃ 2L8x	8x1 ¹ / ₈		(from SAP200	0 Model)
		Axial	P_{max}	52.	.3	69.0 <i>k</i>		(tension)	
Capacity	Toncilo Boi	istanco) 1
	$\Phi P_n = \min$	<u>stunce</u> (Φ <u>"</u> *F <u>"</u> *A _~ (D*F*A_*R	_*U)				AASTIU 0.8.2	1.1
	2 H H	Φ.,	0.95	p - ,				AASHTO 6.5 4	1.2
		Φ	0.8					AASHTO 6.5.4	1.2

	2L8x8x ⁷ / ₈ 2L	8x8x1 ¹ / ₈	
A _n		30.98 in ²	No online in $21.9 \times 9 \times 7^{7}$ (so only
R _p		1.00	No spice in 2L8x8x 78 so only
U		0.99	
ΦP _n =	1264	1596 <i>k</i>	

Rating Factors

RF =	<u>(C - γ</u>	ν _{DC} DC - γ _{DW} DW +/- γ _{LL} LL(1+IM)	- γ _P P)	AASHTO MBE 6A.4.2.1-1	
	С _{Str-I} = Ф	$_{c}\Phi_{s}\Phi_{n}R_{n}$		AASHTO MBE 6A.4.2.1-2	
		$\Phi_c \Phi_s \ge 0.85$		AASHTO MBE 6A.4.2.1-3	
		Φ_{s}	0.85	AASHTO MBE 6A.4.2.4	
	γ _{DC}	1.25			
	$\gamma_{\text{LL inv.}}$	1.75			
	YLL op.	1.35			
	IM	0		AASHTO LRFD Ped. Bridge Manual 3.2	2

Axial			<u>2L8x8x7/8</u>			<u>2L8x8x11/8</u>			
	Condition	Good	Fair	Poor	Good	Fair	Poor		
	Φ _c	1	0.95	0.85	1	0.95	0.85		
	C [k]	1074	1074	1074	1357	1357	1357		
RF _{pedes}	trian inventory	1.35	1.35	1.35	1.26	1.26	1.26		
RF _{pedes}	trian operating	1.75	1.75	1.75	1.64	1.64	1.64		
RFve	hicle inventory	9.65	9.65	9.65	9.13	9.13	9.13		
RF _{ve}	hicle operating	12.5	12.5	12.5	11.8	11.8	11.8		

Triangle Truss Load Rating (LRFR Method)

Diagonals

Diagonals	5							
	L	18.45	ft					
	Size	End 8:	W8x35			Middle 16:	W8x31	
			A _g	10.3	in ²		A _g	9.12 in ²
			b _f	8.02	in		b _f	8 in
			t _f	0.495	in		t _f	0.435 in
			r _s	2.28	in		r _s	2.26 in
	Fy	50	ksi					
	E	29000	ksi					
Dead Load	ls		W8x35	W8x31		(from SAP	2000 Model)	
	ΔχίαΙ	$P_{maxtension}$	41.7	20.5	k			
		P _{max comp} .	39.6	17.8	k			
Live Loads		Pedestrian	and Vehicu	ular loads ac	t seperate	ely		
	<u>Pedestrian</u>	<u>):</u>	PL	90	psf		AASHTO LRFE	Ped Bridge 3.1
				W8x35	W8x31		(from SAP200	0 Model)
		Avial	$P_{maxtension}$	99.8	45	.6 <i>k</i>		
		AXIUI	$P_{maxcomp.}$	99.5	45	.6 <i>k</i>		
	<u>Vehicular:</u>		LL	H10 Truck			AASHTO LRFE) Ped Bridge 3.2
			wheel 1			8 <i>k</i>		
			wheel 2	sing		2 k		
			axle spacir	ng	1	ο <i>μ</i> 14 ft		
			une space	' Ъ	-			
			D	W8x35	W8x31	2.1	(from SAP200	0 Model)
		Axial	P _{max tension}	22.2	16	.2 K		
			P _{max comp} .	22.2	16	.3 K		
Capacity								
• •	<u>Tensile Rei</u>	istance					AASHTO 6.8.2	2.1
	$\Phi P_n = \Phi_y^*$	F _y *A _g						
		Φ_{γ}	0.95				AASHTO 6.5.4	1.2
			W8x35	W8x31				
		ΦP _n =	489	433	k			
	<u>Compressi</u>	on Resistan	<u>ce</u>			AASHTO 6	.9.4.1.1	
	К	0.75				AASHTO 4	.6.2.5	
	Φ_{c}	0.9				AASHTO 6	.5.4.2	

kpff Consulting Engineers

P _e =	$\frac{\pi^2 E^* A_g}{(K^* I/r_s)^2}$				AASHTO 6.9.4.1.2-1
$P_o = QF_yA_g$					AASHTO 6.9.4.1.1
	W8x35	W8x31			
k	0.	.56			AASHTO Table 6.9.4.2.1-1
b	4.01	4	in		
t	0.495	0.435	in		
b/t	8.10	9.20			
k*√(E/F _y)	1	3.5			
Q	1.0	1.0			AASHTO 6.9.4.2
	W8x35	W8x31			
P _e	556	483	k		
Po	515	456	k		
$P_e/P_o =$	1.08	1.06			
$P_{e}/P_{o} > 0.4$	$4 \rightarrow$				
	P _n = (0.658	B^(P _o /P _e))P _o			AASH10 6.9.4.1.1-1
		W8x35	W٤	3x31	
	P _n =	349		307 <i>k</i>	
		W8x35	W٤	3x31	
	ΦP _n =	314		277 k	ightarrow Compression Controls

Rating Factors

RF =	<u>(C - γ</u>	_{DC} DC - γ _{DW} DW +/· γ _{LL} LL(1+IM)	<u>- γ_PP)</u>	AASHTO MBE 6A.4.2.1-1				
	$C_{Str-I} = \Phi_{c}$	$_{c}\Phi_{s}\Phi_{n}R_{n}$		AASHTO MBE 6A.4.2.1-2				
		$\Phi_c \Phi_s \ge 0.85$		AASHTO MBE 6A.4.2.1-3				
		Φ_{s}	0.85	AASHTO MBE 6A.4.2.4				
	γ _{dc}	1.25						
	$\gamma_{\text{LL inv.}}$	1.75						
	$\gamma_{\text{LL op.}}$	1.35						
	IM	0		AASHTO LRFD Ped. Bridge Manual 3.2	2			

<u>Axial</u>			<u>W8x35</u>			<u>W8x31</u>	
	Condition	Good	Fair	Poor	Good	Fair	Poor
	Φ _c	1	0.95	0.85	1	0.95	0.85
	C [k]	267	267	267	267	267	267
	RF pedestrian inventory	1.25	1.25	1.25	3.07	3.07	3.07
	RF pedestrian operating	1.62	1.62	1.62	3.98	3.98	3.98
	RF vehicle inventory	5.59	5.59	5.59	8.59	8.59	8.59
	RF vehicle operating	7.25	7.25	7.25	11.1	11.1	11.1

Triangle Truss Load Rating (LRFR Method)

Crossbracing

ciossbiac	<u></u>							
	L	9.35	ft					
	Size	$2L4x3x^{3}/_{8}$	SLBB					
		A _g		4.98 j	n²			
		b		4 i	n			
		t _f	0	.375 i	n			
		r _s		1.79 i	n			
	F.,	50	ksi					
	E	29000	ksi					
Dead Load	s							
		P _{max tension}		3.58 <i>k</i>	(
	Axial	P _{max comp} .		3.74 k	ć		(from SAF	22000 Model)
Live Loads		Pedestrian	and V	ehicula	ar loads	act seper	ately	
	<u>Pedestrian</u>	<u>:</u>	PL		g	90 <i>psf</i>	,	AASHTO LRFD Ped Bridge 3.1
		A : 1	P _{max te}	nsion	8.3	32 k		((
		Axiai	P _{max co}	mp.	8.7	73 k		(from SAP2000 Model)
	<u>Vehicular:</u>		LL	H	H10 Truc	:k		AASHTO LRFD Ped Bridge 3.2
			wheel	1			8 <i>k</i>	
			wheel	2			2 <i>k</i>	
			wheel	spaciı	ng		6 <i>ft</i>	
			axle s	pacing			14 <i>ft</i>	
		Axial	P _{max te}	nsion	13	.0 <i>k</i>		(from SAP2000 Model)
		/ Widi	P _{max co}	mp.	13	.9 k		
Capacity	Tensile Rei	stance						AASHTO 6.8.2.1
	$\Phi P_n = \Phi_v * I$	F _v *A _o						
	n y	, _Б		0.95				AASHTO 6.5.4.2

237 k

ΦP_n =

kpff Consulting Engineers

Compressi	ion Resistance			AASHTO 6.9.4.1.1
К	0.75			AASHTO 4.6.2.5
Φ _c	0.9			AASHTO 6.5.4.2
P _e =	$\frac{\pi^2 E^* A_g}{(K^* I/r_s)^2}$			AASHTO 6.9.4.1.2-1
$P_o = QF_yA_g$				AASHTO 6.9.4.1.1
k	0.56			AASHTO Table 6.9.4.2.1-1
b	2 in			
t	0.375 in			
b/t	5.33		\ Nonclondor	
k*√(E/F _y)	13.5			
Q	1.0			AASHTO 6.9.4.2
P _e	645 <i>k</i>			
Po	249 <i>k</i>			
P _e /P _o =	2.59			
$P_{e}/P_{o} > 0.4$	14 →			
	P _n = (0.658^(P _o	/P _e))P _o		AASHTO 6.9.4.1.1-1
	P _n =	212 <i>k</i>		
	ΦP _n =	191 <i>k</i>	\rightarrow Compre	ession Controls

Rating Factors

<u>Axial</u>

RF =	<u>(C - γ</u>	_{DC} DC - γ _{DW} DW +/· γ _{LL} LL(1+IM)	<u>- γ_PP)</u>	AASHTO MBE 6A.4.2.1-1
	$C_{Str-I} = \Phi_0$	$_{c}\Phi_{s}\Phi_{n}R_{n}$		AASHTO MBE 6A.4.2.1-2
		$\Phi_c \Phi_s \ge 0.85$		AASHTO MBE 6A.4.2.1-3
		Φ_{s}	0.85	AASHTO MBE 6A.4.2.4
	γ _{dc}	1.25		
	$\gamma_{\text{LL inv.}}$	1.75		
	YLL op.	1.35		
	IM	0		AASHTO LRFD Ped. Bridge Manual 3.2

		<u>W8x35</u>	
Condition	Good	Fair	Poor
Φ_{c}	1	0.95	0.85
C [k]	162	162	162
RF pedestrian inventory	10.3	10.3	10.3
RF pedestrian operating	13.4	13.4	13.4
RF _{vehicle inventory}	6.48	6.48	6.48
RF _{vehicle operating}	8.39	8.39	8.39

Triangle Truss Load Rating (LRFR Method)

Summary

*Timber decking is in poor condition ightarrow

$$\Phi_{\rm c} = 0.85$$

*All other members are in good condition $\rightarrow ~~ \Phi_c$ = 1

*M+A = Combined axial and bending

Controlling Rating	Pedestrian		Vehicle			
Factor & Failure Force	Force	Inventory	Operating	Force	Inventory	Operating
Timber Deck	Moment	5.18	6.72	Moment	0.16	0.21
Girders/Top Chords	M+A	1.39	1.85	M+A	1.56	2.03
Stringers	Moment	1.33	1.72	Moment	1.08	1.40
Floorbeams	M+A	1.40	1.82	Moment	2.02	2.61
Bottom Chord	Axial	1.26	1.64	Axial	9.13	11.8
Diagonals	Axial	1.25	1.62	Axial	5.59	7.25
Crossbracing	Axial	10.3	13.4	Axial	6.48	8.39

Maximum Wheel Load (Inventory): Maximum Wheel Load (Operating): 1268 *lb* 1643 *lb*

(timber decking governs)

APPENDIX D

PHOTOGRAPH LOG PHOTOGRAPH CONTACT SHEET

	ingineers Location Spoke	ine	Date	NILF 8/14/2014	
o o o o o o o o o o o o o o o o o o o	Client City o	f Spokane	Date	0/14/2014	Job No.
Fifth Avenue, Suite 1600 Seattle, 622-5822 fax (206) 622-8130	WA 98101 Inspection Photo Lo	g			114176.12
022 3022 Tax (200) 022 0130		5			
Bridge Name:	Triangle Truss (L	ou Barbieri)			
-					
Date of Inspection:	8/13/2014				
Photo No.	Location		Notes		Ву
		_			
1962	Pier 2, West Bearing	Pack rust and debris			MF
1963	L8	Debris in and below panel p	point L8		MF
1964	L8	Debris in and below panel p	Doint L8		MF
1965	Pier 2, West Bearing	Pack rust and debris	ack rust and debris		
1966	Pier 2, Backwall	Exposed rebar in backwall	xposed repar in backwall		IVIF
1907	Pier 2, Backwall	Crack in backwall	rack in backwall		
1969	Pier 2 Fast Rearing	Pack rust			ME
1970	Pier 2 Backwall	Exposed rebar	aux rusi Evnosed rehar		
1970	Pier 2, East Wingwall	Delamination	Delamination		
1972	i ioi 1, 2000 milgitai				
1973	General	Flaking, corrosion of floorbe	eam. stringer. top	chord of truss	MF
1974			,		
1975	Deck	Twisted planks			MF
1976	Deck	Missing bolts	Missing bolts		
1977	Pier 1, West Bearing	Up to 1/4" pack rust	Up to 1/4" pack rust		
1978	Pier 2, East Bearing	1/4" pack rust	1/4" pack rust		
1979	Pier 1	Corrosion in top chord			MF
1980	General	Bottom chord			MF
1982	Deck	Deck, Looking south			MF
1983	Elevation	Elevation, Looking east			MF
					MF
2015	General	Truss			MF
2016	General	Iruss			MF
2017	General	Iruss			MF
2018	General	Truss			MF
2022	ЦИ ВТ	Top chord has moderate co	prrosion		IPG
2022	General	Truss panel points collectin	a debris		JPG
2025	U3. RT	Top chord has moderate co	prosion		JPG
2030	General	Trues bottom chord			IPG
2031	Floorbeam 1-0	Corrosion on top flange			JPG
2032	General	Truss			JPG
2033	General	Truss. splice			JPG
2034	Deck	Splits in longitudinal deck n	nember		MF
2035	Deck	Splits in longitudinal deck n	nember		MF
2037	Deck	Splits in longitudinal deck n	nember		MF
2038	L8-L9	Bent flange (from construct	ion?)		MF
2039	Deck	Split members			MF
2040	Deck	Split members			MF
	1				

Triangle Truss Bridge Photographs

IMG_2040.JPG

IMG_1962.JPG

IMG_1963.JPG

IMG_1964.JPG

IMG_1965.JPG

IMG_1966.JPG

IMG_1968.JPG

IMG_1969.JPG

IMG_1970.JPG

IMG_1971.JPG

IMG_1972.JPG

IMG_1974.JPG

IMG_1975.JPG

IMG_1976.JPG

IMG_1977.JPG

IMG_1982.JPG

IMG_1983.JPG

IMG_2015.JPG

IMG_2016.JPG

IMG_2017.JPG

IMG_2018.JPG

IMG_2031.JPG

IMG_2022.JPG

IMG_2024.JPG

IMG_2025.JPG

IMG_2030.JPG

IMG_2035.JPG

IMG_2032.JPG

IMG_2033.JPG

IMG_2034.JPG

Triangle Truss Bridge Photographs

IMG_2039.JPG