

RIVERFRONT PARK BRIDGES

INSPECTION AND ANALYSIS

SOUTH SUSPENSION BRIDGE

NOVEMBER 14, 2014 | Final Report

SOUTH SUSPENSION BRIDGE

November 14, 2014

Prepared for

City of Spokane Steve Hansen, Senior Engineer

Prepared by

Kpff Consulting Engineers Marijean Frymoyer, PE Project Engineer / Inspection Team Leader

Sub-consultants

SWCA Environmental Consultant Eileen Heideman Architectural Historian

Table of Contents

Bridge Inspection and Analysis Report

- 1. Bridge Description
- 2. Document Review
- 3. Evaluation Procedures
- 4. Evaluation Findings
- 5. Conclusions and Recommendations
- 6. Permits and Cultural Resource Requirements

Appendix A

Bridge Inspection Form Key Photographs Bridge Component Labeling System

Appendix B

Bridge Improvement Details Cost Estimate

Appendix C

Load Rating Results & Calculations

Appendix D

Photograph Log Photograph Contact Sheet

1. BRIDGE DESCRIPTION

The south suspension pedestrian bridge was built for the 1974 Expo to carry pedestrians and bikes across the north channel of the Spokane River in Riverfront Park. The single-span bridge is 228 feet in length from tower to tower. The bridge superstructure is supported by hanger cables vertically connected to the main cables which are suspended from the towers. The floor system consists of weathering-steel edge girders, a concrete deck, horizontal bracing and a floor-beam that supports 15 electrical conduits running below the deck between vaults. The deck consists of concrete with stay-in-place (SIP) steel forms. Large hollow vaults that encompass the lower portion of each tower below the deck level have a ceiling/ cover that serve as an approach span. This approach span is constructed from a concrete filled stay-in-place deck.

Figure 1: Aerial view of the Suspension Bridges (© 2012 Google Inc.)

2. DOCUMENT REVIEW

In preparation for this evaluation, Kpff reviewed the following documents related to the North Suspension Bridge:

- Structural design drawings (Plan no. G9-G15)
- Previous routine inspection reports
- Ultrasonic testing report (2009)
- Vault inspection report (2011)

3. EVALUATION PROCEDURES

ROUTINE BRIDGE INSPECTION

The bridge was closed to pedestrian traffic for the duration of the bridge inspection. The maintenance department at Riverfront Park provided closure signs.

A visual inspection of the top of the deck, railings, and cable anchorages was performed. These components were accessed by foot. The curb and deck were sounded with a rock hammer to identify areas of delaminations. A visual inspection of the steel framing system, hanger cable bolt connections, and the bottom of the deck (SIP forms) was performed. These components were accessed by a climbing system anchored to the hanger cable connection above the curb and a back-up safety line anchored to the metal railing. The girder flanges and webs were measured with a D-meter and/or calipers at locations which showed evidence of section loss. A hands-on visual inspection of the main suspension cable connections at the towers, spreader bars and adjacent suspender cables was performed. These components were accessed by ascending a rope anchored to the spreader bars. The remainder of the hanger cables and the main suspension cables were also inspected. These cables were accessed with a 32-foot extension ladder (provided by the Riverfront Park maintenance department). A visual inspection of the vaults at the concrete towers was accessed by an extension ladder (provided by Avista). The vaults are considered a confined space; air monitoring equipment was provided by Avista.

STRUCTURAL ANALYSIS

The main suspension cables, suspender cables, and steel girders were load rated using the LRFR method. The analysis was performed using CSiBridge. A uniform pedestrian live load of 90 psf and two vehicle live loads (6-foot-7-inch wheelbase/16,200 pounds and 8-foot-3-inch wheelbase/21,190 pounds) were used in the analysis. The vehicle weight distribution was assumed to be 75 percent of the total weight at the front axle and 25 percent of the total weight at the rear axle. The analysis assumed that there was only one vehicle on the bridge at a time and the vehicle load did not act concurrently with the uniform pedestrian live load. No impact was included for the live loads.

4. EVALUATION FINDINGS

BRIDGE INSPECTION

The elements with the heaviest corrosion and overall deterioration are the deck, floor-beams, hanger cable bolts, and conduit roller supports. The construction joints in the deck allow water to penetrate through the top. The water is trapped in the SIP forms until it eventually rusts through. The water leaking through the deck and corroded SIP form eventually causes corrosion of the floorbeams and the conduit supports. Many of the horizontal plates connecting the lateral bracing to the girders are filled with debris, which traps moisture and causes the connections to corrode.

The metal railing, main suspension cable, hanger cables, steel pins, concrete towers, and cable anchorages are all in good condition. The steel girders are, overall, in satisfactory condition, with the exception of a few isolated areas that have moderate corrosion.

There are tree branches growing around the cable at the anchorage. The south anchorage block is buried. The northwest and south anchor plates only have one lock nut per anchor rod.

The SIP forms and steel supports in the vaults are severely corroded. The heaviest corrosion occurs at the locations were water can penetrate from the top of the deck which are: around the manhole, around the concrete tower, and at the expansion joint at the bridge abutments. A large section of the SIP formwork is no longer is place near the bridge abutment.

The bridge inspection report, component labeling system, and photographs are included in Appendix A.

STRUCTURAL ANALYSIS

The load rating analysis is reported as a Rating Factor (RF). The RF is the ratio of available capacity in each primary superstructure component over the specified live load combination under investigation. Based on AASHTO specifications, a RF less than 1.0 is interpreted to mean that one or more of the superstructure components do not meet current minimal capacity code standards and consideration should be given to either strengthening the subject component(s), or posting a sign identifying a maximum allowable load for the structure linked to the actual RF of the structure. Rating factors greater than 1.0 are interpreted to mean that all of the superstructure components have sufficient capacity to safely support the load under investigation, per the AASHTO specifications.

The minimum rating factor under the pedestrian live load, excluding the deck, is 1.56. The associated controlling component is the axial strength of the backstay anchorage cable. The minimum rating factor under the inspection vehicle live load is 1.59. The associated controlling component is the girder in flexure.

An analysis of the deck based on its current existing condition was also performed. In the original design of the deck the SIP forms were designed as a permanent structural member. Since the SIP place forms are heavily corroded in many locations, they were ignored for determining the capacity of the deck. The deck was analyzed assuming the average moment demands between a fix-fix and pin-pin connection between the slab and girders. The capacity of the deck is based on the tensile strength of the concrete. This analysis resulted in a RF = 0.51 for the deck in flexure under pedestrian loads. A load rating for the deck under vehicle loads was not performed, since vehicles are not currently allowed on the bridge.

The load rating calculations are included in Appendix C.

5. CONCLUSIONS AND RECOMMENDATIONS

The South Suspension bridge structural condition, minus the deck, can be characterized as very good to fair depending on which part of the bridge is being viewed. In General, the area above the deck including the tower is very good and the areas below the deck are satisfactory to fair. The steel area below the deck will be further investigated and upgraded as needed under our recommendations. Upon completion of this rehabilitation work the area both above and below the deck can be considered to be in good to very good condition. Some minor defects will remain but they will be immaterial to the inherent structural functioning capacity of the bridge as a whole.

In general, structural steel components that support bridges are conducive to corrosion from environmental conditions such as water, moisture, salts, air pollution, dirt and plants, bird droppings and bird nests. The more these items are kept a bay the longer the bridge will last. Maintenance is critical, especially in the form of cleaning and removing debris, bird nests and droppings from anyplace on the structure they can or do collect. The

Suspension bridges structural components while experiencing all degrees of corrosion (minor to severe) over the past 30 years has really overall performed fairly well.

Currently, there is no reason to suspect that this bridge will not be in service for at least another 50 years if repaired as recommended below, bi-annually inspected and maintained (cleaned) on an annual basis.

The steel used for this bridge is weathering steel. Its protective coat is a result of a thin film of rust. It is an excellent system for this environment. However, if over time this protection system appears to degrade, painting the bridge becomes an option which can easily buy another 20 to 30 years of service life for those components. Currently we are recommending painting for those areas already exposed to at least moderate levels of corrosions – generally around the panel point connections.

The deck is in poor to critical condition and must be replaced. A new, properly designed and constructed, deck should function well for another 30 to 50 years. It is recommended that salt not be applied ever to the new deck. It is far better to close the bridge if it seems the slippery to walk on with snow and ice. Salt leads to deterioration of concrete, the deck SIP forms, and any part of the steel components it touches.

Overall, the suspension bridges and vaults require a substantial amount of rehabilitation work to preserve their lifespan. The details of the bridge and vault improvement plans are included in Appendix B, along with a detailed cost estimate. The combined total cost for the recommended repairs for the North and South Suspension Bridges and Vaults is \$2.8 million.

Our recommendations to improve the bridge are summarized below

DECK

Due to the heavy corrosion of the SIP forms and the numerous areas of delaminations in the concrete, the deck and curb should be replaced. The new deck should have an improved drainage system to prevent future corrosion of the superstructure. A drainage channel could be added along the curb. The deck should receive a waterproofing sealant.

STEEL FRAMING SYSTEM

The steel framing should be cleaned of debris and flaking steel. After the deck is removed and the steel is cleaned, another inspection should be performed to determine if there are areas of section loss that need to be reinforced. Floorbeams that are moderately to heavily corroded should be replaced. Floorbeams with minor corrosion should be cleaned and painted.

METAL RAILING

The hand rail screws that have been stripped near hanger H9 LT and between hangers H10-H11 RT and H4-H5 RT should be replaced.

The clear opening between the railing posts does not meet current code. Consideration should be given to modifying the railing to meet code when the deck is replaced.

HANGER CABLE ANCHOR BOLTS

The load rating analysis determined that the original anchor bolts had much more capacity than required based on the design loads. Therefore, if the anchor bolts only have a small to moderate amount of corrosion (less than 25%

section loss), they will still have well above sufficient capacity to support dead and live loads. These anchor bolts should be cleaned of all rust and painted. Anchor bolts with severe corrosion (more than 25% section loss) should be replaced.

ELECTRICAL CONDUITS

The conduit supports at the floorbeams are heavily corroded. The conduits are corroded in many locations. The conduits will need to be removed in order to clean and replace the floorbeams. The estimated cost and improvement details assume that all of the conduits and supports will be replaced.

CABLE ANCHORAGE

The tree branches should be cut back around the south cable and the soil should be removed from around the anchors and anchorage block. The lock nuts at the northwest and south anchors should be tack welded in place.

VAULTS AT CONCRETE TOWERS

The deck and the steel framing in the vaults should be replaced and additional framing around the manhole opening should be provided. The conduits should be removed during construction, and the new deck should be constructed with removable formwork. The sidewalk around the vaults should also be replaced. A compression seal should be installed at the expansion joints to prevent the large intrusion of water at the joint.

FUTURE INSPECTIONS

A routine walk-through inspection should be performed every two years. KPFF has provided inspection forms, which if utilized on a continual basis will, over time, provide an invaluable record of the bridge condition, areas of continual problems, and help inform the best way to care for the bridge and preserve the City's investment in its infrastructure.

6. PERMITS AND CULTURAL RESOURCE REQUIREMENTS

PERMITS

An environmental permit matrix was prepared by SWCA Environmental Consultants for the Riverfront Park Bridges. The proposed bridge improvement work may require the following permits or approvals:

- Hydraulic Project Approval permit from the Washington Department of Fish and Wildlife.
- Critical Areas Review from the City of Spokane
- Shoreline Substantial Development Permit from the City of Spokane

More information can be found in SWCA's report.

APPENDIX A

	PAGE
BRIDGE INSPECTION FORM	A-1

LIST OF PHOTOGRAPHS

<u>РНОТО</u>	DESCRIPTION	PAGE
1	South Suspension Bridge Deck (Looking North)	A-3
2	South Suspension Bridge Elevation (Looking West)	A-3
3	Loose Cover Plate on Handrail	A-4
4	Heavy Corrosion at Pier 1/Floorbeam 1-1	A-4
5	Top Flange of Right Girder near H6, ~1/4-inch measured section loss	A-5
6	Heavy Corrosion at H6 RT Suspender Cable Interior Hanger Connection	A-5
7	Remove Tree Branches around South Cable Anchorage	A-6
8	Weld Lock Nut at Northwest and South Cable Anchorage	A-6
9	Corroded/Missing Stay-in-Place Formwork above Floorbeam (Typical)	A-7
10	Vault No. 1: Severely Corroded Beam	A-7
11	No. 1: Corroded Stay in Place Formwork around Manhole	A-8
12	Vault No. 2: Missing Stay in Place Formwork and Corroded Beam/Angle near Abutm	nent A-8

PAGE

BRIDGE COMPONENT LABELING SYSTEM: SUSPENDER CABLE / PANEL POINT	
FLOORBEAMS	
SPREADER BARS	A-10

CITY OF SPOKANE

	Bridge No.						
Bridge Name				Bridge Location			
Inspection Date			Inspector(s)			Agency	
Access Method						Weather	
Lood Dating Data			1.5	Pedestria	an	v	ehicle
Load Rating Date			LIVE LOAD				
Lood Dating Factor(a)	Ped.	Veh.	Controlling	Pedestria	an	v	ehicle
Load Rating Factor(S)			Component				

Description of Bridge

Summary of Condition and Critical Findings

Summary of Recommendations

Summary of Bridge Condition

			No. of %		lition Ra	ating*	
	Bridge Component	Compon.	of **	8 – 7 Good	6 – 5 Fair	4 – 3 Poor	Comments
1							
2							
3							
4							
5							
6							
7							
8							
9							
10							
11							
12							
13							

*See Page 2 for detailed descriptions **Condition rating percentages are based on the % of area, length, or each of the bridge components inspected.

GENERAL NOTES

	DESCRIPTION OF CONDITION OF BRIDGE COMPONENT					
Condition Value	Material	Description				
8 – 7	Steel	Like new, surface rust, minor pitting, no material loss. Connections are good. No damage.				
0-1	Concrete	No to minor/ insignificant defects includes: cracks, spalls, chips, consolidation, efflorescence.				
Very good \rightarrow Good	Timber	Beams: Minor splits, checks, or defects (one side), no decay or insects – sounds solid. Posts: Splits or cracks less than $\frac{3}{6}$ " (one side), no decay or insects – sounds solid.				
2 yr. insp. Cycle	Paint	No defects, no sign of rust including no freckled rust, no peeling, no exposed steel.				
No repairs.	Scour / Erosion	None or minor.				
6 – 5	Steel	Moderate corrosion, pitting, flaking, pack rust. Material loss is evident but barely measurable. Connections have up to moderate corrosion but remain fully functional. No cracks.				
Satisfactory \rightarrow Fair	Concrete	Some spalling but exposed rebar (if any) is insignificant or exhibits some surface rust; delamination is evident with or without evidence of rebar corrosion. Shear zone cracks are tight, barely measureable, and low density. Flexure zone cracks are measurable but less than .035 inch and low				
1 – 2 yr insp. cycle density. Concrete may exhibit: emorescence (moderate to neavy), surface rust, neavy map craci very poor consolidation. Settlement cracks in foundations and wall are stable and less than ¼" w						
Monitor for repairs Timber Beams: Less than ¾" splits – two sides or greater than ¾" on one side. Some decay (max 10% volume), some softness but sounds solid – no insects. Posts: More than ½ "splits – two sides or greater than ¾" on one side. Decay is evident (great than 20% by volume), timber may have extensive wetness and softness						
Paint: Max 10 year life	Paint	Freckled rust, small areas of exposed steel, some peeling, oxidized.				
	Scour / Erosion	Evidence of scour, exposed footing, no undermining. Banks are sloughing, protection, if any, needs repair.				
4 – 3	Steel	Heavy to severe: corrosion, pitting, pack rust. Measurable material loss. Connections are heavily corroded, missing, and questionable functionality. Fatigue cracks.				
Poor \rightarrow Critical 3 mo – 1 yr. insp. cycle	Concrete	Large spalls, deep w/ exposed and corroded rebar w/ material loss evident. Cracks are wider, closely spaced, clearly structural in nature both in shear and flexure zone. Concrete quality appears poor w/ heavy scaling, stagilites, efflorescence, map cracking, extensive surface rust and delamination, and very poor consolidation of concrete. Settlement cracks are significant.				
(as needed) Repairs needed. (ASAP or one year)	Timber	Beams: Greater than %" on two sides. Moderate decay up to 20%, surface softness, do not sound solid – may have insects. Posts: Less than ½ "splits – two sides or greater than ½" on one side. Decay is evident (20%), wetness and soft.				
Re - naint	Paint	Extensive freckled rust, larger areas of exposed steel, heavily oxidized, extensive peeling.				
Ne - paint	Scour / Erosion	Undermining or threatens undermining in a manner that could impact structure stability. Banks are heavily eroded, protection if any is non-functional.				

Additional Comments by Component Number

Bridge Comp. No.	Comments

Photo 1 –South Suspension Bridge Deck (Looking North)

Photo 2 – South Suspension Bridge Elevation (Looking West)

Photo 3 – Loose Cover Plate on Handrail

Photo 4 – Heavy Corrosion at Pier 1/Floorbeam 1-1

Photo 5 – Top Flange of Right Girder near H6, ~1/4" measured section loss

Photo 6 – Heavy Corrosion at H6 RT Suspender Cable Interior Hanger Connection

Photo 7 – Remove Tree Branches around South Cable Anchorage

Photo 8 – Tack Weld Lock Nut at Northwest and South Cable Anchorage, Remove Soil around South Anchorage block

Photo 9 – Corroded/Missing Stay-in-Place Formwork above Floorbeam (Typical)

Photo 10 –Vault No. 1: Severely Corroded Beam

Photo 11 – Vault No. 1: Corroded Stay in Place Formwork around Manhole

Photo 12 –Vault No. 2: Missing Stay in Place Formwork and Corroded Beam/Angle near Abutment

Bridge Component Labeling System: Suspender Cable / Panel Point

Bridge Component Labeling System: Floorbeams

Bridge Component Labelling System: Spreader Bars

APPENDIX B

IMPROVEMENT DETAILS COST ESTIMATES

				REGION NO.	SIAIE	FEDERAL AID PRO	JJECI NO.	SHEET NO.
				EASTERN	WASH.			
ST HANCER								
RIFS								
DLLO								
JRIS								
ST HANGER								
BLES								
-CLEAN & PAIN	NT **							
ANCHOR BOLT	S							
-CLEAN & PAIN	NT							
CONNECTIONS								
HEN								
1	500 IS							
	PROJECT NAME:		RIVERFRONT	PARK	BR	IDGES		
	BRIDGE NAME					IMPROVENENT.	BUIL	CE.
INGTON	NORTH #	SOUTH SI	ISPENISION RI				URIU	<u>ا</u> ر
RVICES			SULINDION DI	NUGLE		T PROJECT NUMBER	PLAN NI	JMBER
		DECK REPLAC	EMENI ∉ REHAB		2	013186		
5		TYPICAL	SECTION				Ιc	f 3
					ALC: NO			

CALL BEFORE YOU DIG I-800-424-5555

	PROJECT NAME: RIVERFRONT PARK	BRIDGES	
	BRIDGE NAME:	TYPE OF IMPROVEMENT:	BRIDGE
	NORTH & SOUTH SUSPENSION BRIDGES	CITY PROJECT NUMBER	PLAN NUMBER
LIVIOLO	VAULT DECK REPLACEMENT	2013186	
43	PLAN AND SECTION	EFN:	2 of 3

CALL BEFORE YOU DIG I-800-424-5555

CALL BEFORE YOU DIG I-800-424-5555

<u>, , ,</u>					
Cost Estimates for Bridge Improvements Based on the 2014 KPFF Inspection and Analysis Recommendations					
Bridge Name:	Two Suspensio	n Bridges (North and S			
Combined Bridge Length and Width (feet)	474	10			

Suspension Bridges (North and South) and Vault decks. 474 10

Recommendations for Improvements - Include:

City of Spokane Pedestrian Bridges

Deck Replacement, Structural Steel Improvments, Valult Rehabilitation

Item no	Item Description	Cost Unit	Quantity	Unit Cost		Item Cost
1	Existing Rail Remove and Re-install	LF	474	90	\$	42,660
2	Replace Existing Anchor Bolts	EA	25	1250	\$	31,000
3	Clean and Paint In-situ Anchor Bolts	EA	223	450	\$	100,440
4	Remove Existing Deck and Curb	SF	4740	45	\$	213,300
5	New Deck and Curb	SF	4740	65	\$	308,100
6	Replace Floorbeams	EA	9	4500	\$	38,925
7	Clean, Strengthen, & Paint in-situ Floorbeams	EA	26	1500	\$	39,525
8	Replace Conduits and Supports	LF	7110	12	\$	85,320
9	Edge Girder Repair and Painting	LF	948	250	\$	237,000
10	Repair/Replace Vault Deck and Adj. Sidewalk	EA	4	25000	\$	100,000
12	Misc and Constructibility Access	LS	2	100000	\$	200,000
	Total				\$	1,396,270
13	Mobilization	12%			\$	167,552
14	Design, Permits, Survey	30%			\$	418,881
15	Construction Management	13%			\$	174,534
16	Taxes	8%			\$	111,702
17	Contingency	30%			\$	418,881
18	Excalation (1 year)	3%			\$	41,888
19	Agency Project Development & Mngmt.	5%			\$	69,814
	Total				\$	1,403,251
	Total Project Cost (2015)				ć	2 700 521
	Square Foot Costincludes \/ault Area (\$ (55)				ې	2,199,521
	square Foot Cost - includes vault Area (\$/SF)				Ş	545

Note: Total project cost is for both north and south suspension bridges and all four vault repairs.

Nov-14

APPENDIX C

LOAD RATING RESULTS AND CALCULATIONS

Riverfront Park Bridges Inspections & Analysis South Suspension Bridge

Structural Analysis – Load Rating Summary

LRFR Bridge Rating Summary

Strength I – Rating Factors (RF):

	Pede	strian	Veh	nicle	
	Inventory	Operating	Inventory	Operating	
Deck (Stress) RF	0.51	0.66	N/A	N/A	
Controlling Point	Center	of Deck	N/A		
Steel (Moment) RF	2.76	3.58	1.59	2.06	
Controlling Point	Girders at Hang	ger Connections	Girders at Hanger Connections		
Cable (Axial) RF	1.56	2.02	9.97 12.9		
Controlling Point	Backsta	y Cables	Backsta	y Cables	
Pylon (M+A) RF	1.87	2.43	10.1 13.0		
Controlling Point	Base c	of Pylon	Base o	f Pylon	

Maximum Pedestrian Live Load

Inventory = 0.51*90 psf = 46 psfOperating = 0.66*90 psf = 59 psf

Pedestrian = 90 psf uniform distributed load

Vehicle = Bridge Inspection Vehicles

(12,150 lb. front axle, 4,050 lb. rear axle, 6'-7" axle spacing) (15,895 lb. front axle, 5,300 lb. rear axle, 8'-3" axle spacing) Weights provided by City of Spokane Engineering Department

Figures C3.1-1 and C3.1-2 from the *LRFD Guide Specifications for the Design of Pedestrain Bridges* (December 2009) give a visual representation of the uniform pedestrian live load.

Figure C3.1-1-Live Load of 50 psf

Figure C3.1-2-Live Load of 100 psf

Structural Analysis - Load Rating

Design Parameters:

Concrete

f'c = 4,000 psi @ 28 days Rebar – fy = 60,000 psi

Steel

Yield Stress, fy = 50 ksi Modulus of Elasticity, E = 29,000 ksi

Cables

Yield Stress, fy = 160 ksi Tensile Stress, fu = 200 ksi Modulus of Elasticity, E = 20,000 ksi

Dead Loads

Superstructure self weight Curb and railing Conduits (CSiBridge Load – Sched3-ZERO, step 31)

Live Loads

Pedestrian Uniform Load = 90 psf (CSiBridge Load – Pedestrian) Vehicle Load = 16,200 lb inspection vehicles (CSiBridge Load – Truck 1) Vehicle Load = 21,190 lb inspection vehicles (CSiBridge Load – Truck 2) Impact is not included Pedestrian and Vehicle Loads do not act concurrently

Analysis Methods:

The bridge geometry, section properties, and cables were modeled in CSiBridge based on the "As Built" drawings. The force in the cables was not specified so they were set to values that resulted in zero dead load deflection. The moment, shear, and axial demands due to dead loads and live loads were exported from CSiBridge to Excel. The moment, shear, and axial capacities were calculated in Excel. The Strength I rating factors were calculated in Excel using the peak demands in each element type.

The visual bridge inspection completed on September 5, 2014 found the deck to be in poor condition, and the floor beams to be in fair condition. All other superstructure components were shown to be in good condition. The condition rating factor, ϕ_c , is equal to 1.0 for good members, 0.95 for fair members, and 0.85 for poor members. The system rating factor, ϕ_s is equal to 1.0 for redundant members such as the deck, floorbeams, crossbracing, and spreader bars, and 0.85 for all other non redundant members.

Riverfront Park Bridges Inspections & Analysis South Suspension Bridge

The Strength I Load Rating checks flexure, shear, and axial capacities, as well as combined concurrent moment and axial capacity. Each member was checked individually and compared to the demands given in the CSiBridge model. The deck was not load rated for vehicles as it is in poor condition and is being recommended for replacement. No vehicles shall be allowed on the existing deck.

South Suspension Bridge Undeformed

South Suspension Bridge Extruded View

South Suspension Bridge Dead Load Moment

South Suspension Bridge Dead Load Shear

South Suspension Bridge Pedestrian Axial Force

South Suspension Bridge Vehicular Moment

South Suspension Bridge Load Rating (LRFR Method)

Concrete Deck

	t _{middle} t _{edges} h _{corregation} t _{average} clear cov. d _{trans. bars} A _{bars} S _{bars} f _y b _{deck}	5 in 4 in 1.5 in 3.75 in 1.5 in 1.75 in 0.2 in ² 9 in 60 ksi 8.79 ft			formwork and strength of concrete in corregation. Since the transverse steel is so high up in the section, check the bending stress in the bottom of the slab at the middle instead of the moment. The deck is assumed to be between fixed-fixed and pinned-pinned at the curbs. Curbs not checked.				
	S	28.1	in ³ /ft						
	f' _c	4	ksi						
	γ _c	0.16	kcf						
	β_1	0.85							
Dead Load	s	Self Weigh	t of deck i	is onlv dea	d load				
	Weight	$W_{deck} = t_{average} * \gamma_c * 1 ft =$ $M_{deck \text{ fixed}} = W_{deck} * b_{deck}^2 / 24 =$ $M_{deck \text{ pinned}} = W_{deck} * b_{deck}^2 / 8 =$ $\sigma_{deck} = M_{deck \text{ avg.}} / S =$ $V_{deck} = W_{deck} * b_{deck} / 2 =$				50.0	0 <i>lb/ft</i>		
	Moment					161 483	1 lb-ft/ft 3 lb-ft/ft		
	Bot. Stress					137	7 psi		
	Shear					220	0 <i>lb/ft</i>		
Live Loads		Pedestrian	and Vehi	cular loads	s act sene	ratelv	lv.		
	<u>Pedestrian</u>	: :	PL		90 <i>psf</i>		AASHTO LRFD Ped Bridge 3.1		
		Weight	$W_{PL} = PL^3$	*1 <i>ft</i> =			90 <i>lb/ft</i>		
		Mamont	$M_{deck fixed} = W_{PL} * b_{deck}^{2}$		_{ck} ² /24 =		290 <i>lb-ft/ft</i>		
		woment	$M_{deck pinned} = W_{PL} * b_{deck}$		$deck^2/8 =$		870 <i>lb-ft/ft</i>		
			$\sigma_{PL} = M_{PL}$	avg./S =			247 psi		
			$V_{PL} = W_{PL}$	$b_{deck}/2 =$			396 <i>lb/ft</i>		
	Vehicular:		LL		Truck	1	Truck 2		
				Total		16.2	2 21.19 <i>k</i>		
		Weight	Axle 1 Wheels Axle 2 Wheels wheel spacing			6.08	8 7.95 <i>k</i>		
						2.03	3 2.65 <i>k</i>		
						6	b 6 ft 8 8 25 ft		
			avie shar			0.50	ο ο.2 <i>3 μ</i>		
		Moment	M _{LL} =	N/A	lb-ft/j	ft	Vehicular demands not checked as vehicles		
		Shear	V _{LL} =	N/A	lb/ft		are not allowed on bridge.		

*Conservatively neglect corregated metal

Capacity <u>Shear</u> $V_n = V_c + V_s$ AASHTO 5.8.3.3-1 0.9 Φ AASHTO 5.5.4.2 $V_{c} = 0.0316*\beta*sqrt(f'_{c})*b_{v}d_{v}$ AASHTO 5.8.3.3-3 β 2 AASHTO 5.8.3.4.1 b_v 12 in (Unit width) $d_v = M_n/(A_s f_v) < min(0.9d, 0.72h)$ AASHTO 5.8.2.9 d_v = 1.80 in V_c = 2730 lb/ft $V_s = 0$ (Conservative assumption) ΦV_n = 2730 lb/ft Direct Concrete Tensile Strength $f_r = 0.23*Vf'_c =$ 0.46 ksi AASHTO C5.4.2.7

Rating Factors

RF =	<u>(C - γ</u>	_{DC} DC - γ _{DW} DW +/- γ _P P) γ _{LL} LL(1+IM)		AASHTO MBE 6A.4.2.1-1
	$C_{Str-I} = \Phi_c \Phi_s \Phi_n R_n$			AASHTO MBE 6A.4.2.1-2
		$\Phi_c \Phi_s \ge 0.85$		AASHTO MBE 6A.4.2.1-3
		Φ _s	1	AASHTO MBE 6A.4.2.4
	γ_{DC}	1.25		
	γ_{LL} inv.	1.75		
	Υ LL op.	1.35		
	IM	0		AASHTO LRFD Ped. Bridge Manual 3.2

kpff Consulting Engineers

Deck

Bottom Stress					
	Condition	Good	Fair	Poor	
	Φ_{c}	1	0.95	0.85	
	C [psi]	460	437	391	
	RF pedestrian inventory	0.67	0.61	0.51	
	RF pedestrian operating	0.86	0.79	0.66	
	RF vehicle inventory	N/A	N/A	N/A	
	RF vehicle operating	N/A	N/A	N/A	
<u>Shear</u>					
	Condition	Good	Fair	Poor	
	Φ_{c}	1	0.95	0.85	
	C [lb/ft]	2730	2594	2321	
	RF pedestrian inventory	3.55	3.35	2.96	
	RF pedestrian operating	4.60	4.34	3.83	
	RF vehicle inventory	N/A	N/A	N/A	
	RF _{vehicle operating}	N/A	N/A	N/A	
South Suspension Bridge Load Rating (LRFR Method)

Girders

	L Spacing	204.6 9.5	ft ft						
	Crossbeam	Spacing	-	15 <i>ft</i>					
	Size	W18x50							
		b _f		7.50 in			F _{yc}	50 <i>ksi</i>	
		t _f	0	.570 in			F _{yw}	50 <i>ksi</i>	
		r _t		1.98 in			$F_{vr} = 0.7F_{vc}$	35 <i>ksi</i>	
		d		18 in			E	29000 ksi	
		D		16.9 <i>in</i>					
		t _w	0	.355 in					
		S _x		88.9 in ³					
Doodlood	c								
Deau Luau	3	M (+)		$60.5 k_{-in}$					
	Moment			10C k in				(from CSiBridge Medel)	
	Shear	V _{max}		2.34 <i>k</i>					
Live Loads		Pedestrian	and Ve	hicular lo	ads act se	peratel	/		
	Pedestrian	:	PL		90 ps	f	1	AASHTO LRFD Ped Bridge 3.1	
		Weight	W _{PL} =	PL*w _{trib.} =		427.5	5 plf	-	
		Moment	\mathbf{M}_{\max}	(+)	537.0 <i>k-i</i>	n			
			M_{min}	(-)	0.0 <i>k-i</i>	n		(from CSiBridge Model)	
		Shear	V_{max}		2.29 <i>k</i>				
	<u>Vehicular:</u>		LL		Tru	uck 1	Truck 2		
			Total			16.2	2 21.19	k	
		Weight	Axle 1	Wheels		6.08	3 7.95 D 2.05	o K	
			Axie Z	spacing		2.03	5 2.05) K : ft	
			axle sp	bacing		6.58	8.25	ft	
			M _{max}	(+)	961 <i>k-i</i>	n			
		woment	M _{min}	(-)	286 <i>k-i</i>	n		(trom CSiBridge Model, Truck 2	
		Shear	V_{max}		7.46 <i>k</i>			controls)	

Capacity					
	<u>Local Buck</u>	ling Resistance			AASHTO 6.10.8.2.2
	$\lambda_{\rm f} = b_{\rm fc}/2t_{\rm fc}$	c =		6.58	AASHTO 6.10.8.2.2-3
	$\lambda_{pf} = 0.38*$	$V(E/F_{yc}) =$		9.15	AASHTO 6.10.8.2.2-4
	$\lambda_{rf} = 0.56^*$	v(E/F _{yr}) =		13.49	AASHTO 6.10.8.2.2-5
	$\lambda_{f}\!<\!\lambda_{pf}\!\rightarrow\!$	$F_{nc} = R_b * R_h * F_y$	с	AA	SHTO 6.10.8.2.2-1
		R _b	1	AA	SHTO 6.10.1.10.2
		R _h	1	AA	SHTO 6.10.1.10.1 (constructability is not checked)
		F _{nc} =	50 <i>k</i>	si	
	<u>Lateral To</u>	rsional Buckling	<u>1</u>		AASHTO 6.10.8.2.3
	L _b			15 <i>ft</i>	
	$L_p = r_t^* V(E)$	/F _{yc}) =		3.97 <i>ft</i>	AASHTO 6.10.8.2.3-4
	$L_r = \pi^* r_t^* V$	(E/F _{yr}) =		14.92 <i>ft</i>	AASHTO 6.10.8.2.3-5
	$L_b > L_r \rightarrow$	$F_{nc} = F_{cr} \le R_b * F_{cr}$	R _h *F _{yc}		
	F _{cr} =	<u>-</u> - <u>C_b*R_b*π</u> (L _b /r _t)	² *E 2		AASHTO 6.10.8.2.3-9
		$C_{\rm b} = 1.75 - 1.0$	$5(M_1/M_2)$	$+ 0.3(M_1/M_2)^2$	² ≤ 2.3 AASHTO 6.10.8.2.3-7
		-0	(-M)	(+M)	
		M _{2 (veh.)} =	286	961 <i>k-ir</i>	largest moment at end of braced length
		M _{mid (veh.)} =	236	858 k-ir	moment at middle of braced length
		M _{0 (veh.)} =	186	755 <i>k-ir</i>	smallest moment at end of braced length
		$M_{1 (veh.)} = M_{0 (veh.)}$	_{/eh.)} =		AASTHO A6.3.3-12
			186.4	755 <i>k-ir</i>	1
		C _{b (vehicle)} =	1.19	1.11	
			(-M)	(+M)	
		M _{2 (ped.)} =	0.0	537.0 <i>k-ir</i>	a largest moment at end of braced length
		M _{mid (ped.)} =	0.0	514.4 <i>k-ir</i>	moment at middle of braced length
		M _{0 (ped.)} =	0.0	491.8 <i>k-ir</i>	smallest moment at end of braced length
		$M_{1 (ped.)} = M_{0 (ped.)}$	ped.) =		AASTHO A6.3.3-12
			0.0	491.8 <i>k-ir</i>	1
		C _{b (ped.)} =	1.75	1.02	
			(-M)	(+M)	
		$F_{cr (vehicle)} =$	41.3	38.4 <i>ksi</i>	
		$F_{cr (ped.)} =$	60.6	35.3 <i>ksi</i>	
	F	F _{nc veh. & -ped} =	38.4 <i>k</i>	si	
		$F_{nc + ped} =$	35.3 <i>k</i>	si	

Tension Flange Flexural R	esistance		
$F_{nt} = R_h * F_{yt} =$		50 <i>ksi</i>	AASHTO 6.10.8.3-1
Minimum Flexural Resista	ince		
$\Phi M_{n 33} = \Phi_f * S_x * \min(F_{nc}, F_r)$	_{nt})		
Φ_{f}	1		AASHTO 6.5.4.2
ΦM _{n veh. & -ped} =	3418 <i>k</i>	-in	
ΦM _{n +ped} =	3142 <i>k</i>	r-in	
Unstiffened Web Shear Re	<u>esistance</u>		AASHTO 6.10.9.2
$\Phi V_n = \Phi_v V_{cr} = \Phi_v C V_p$			
Φ_v	1		AASHTO 6.5.4.2
$V_{p} = 0.58*F_{yw}$	*D*t _w =	173.6 <i>k</i>	AASHTO 6.10.9.2-2
D/t _w		47.5	
k		5	
1.12*V(E*k/F _y	-w) =	60.3	
if D/t _w < 1.12*	'√(E*k/F _{yw}) → C=1	
С		1	
ΦV _n =	173.6 <i>k</i>		

DE -	<u>(C - γ_{DC}</u> [DC - γ _{DW} DW +/- γ	/ _₽ Ρ)	AASHTO MBE 6A.4.2.1-1		
Krgeneral –		γ _{LL} LL(1+IM)		(Impact for vehicles only)		
	$C_{Str-I} = \Phi_c \Phi_s$	${}_{s}\Phi_{n}R_{n}$		AASHTO MBE 6A.4.2.1-2		
		$\Phi_c \Phi_s \ge 0.85$		AASHTO MBE 6A.4.2.1-3		
		Φ_{s}	0.85	AASHTO MBE 6A.4.2.4		
	γ _{DC}	1.25				
	$\gamma_{\text{LL inv.}}$	1.75				
	$\gamma_{\text{LL op.}}$	1.35				
	IM	0		AASHTO LRFD Ped. Bridge Manual 3.2		

Girders	
---------	--

<u>Flexure</u>				
	Condition	Good	Fair	Poor
	Φ_{c}	1	0.95	0.85
	C [k-in]	2670	2670	2670
	RF pedestrian inventory	2.76	2.76	2.76
	RF pedestrian operating	3.58	3.58	3.58
	C [k-in]	2905	2905	2905
	RF _{vehicle inventory}	1.59	1.59	1.59
	$RF_{vehicle operating}$	2.06	2.06	2.06
<u>Shear</u>				
	Condition	Good	Fair	Poor
	Φ _c	1	0.95	0.85
	C [k]	148	148	148
	RF pedestrian inventory	36.1	36.1	36.1
	RF pedestrian operating	46.8	46.8	46.8
	RF vehicle inventory	11.1	11.1	11.1
	RF vehicle operating	14.4	14.4	14.4

 $\lambda_{rf} = 0.56* v(E/F_{yr}) =$

South Suspension Bridge Load Rating (LRFR Method)

Floorbeams

11001600	115									
	L		9.5 <i>ft</i>							
	Spacing		15 <i>ft</i>							
	Cino	MCVDO								
	5120	ννox20 h		6.08 in			F		50 <i>ksi</i>	
		t.		0.00 in 0.37 in			r yc F		50 ksi	
		ч _f r		0.37 III 1 70 in			'yw E - 0 71	-		
		lt d		1.70 III 6 2 in			г _{уг} – 0.71	Гус	33 KSI 20000 kci	
		u D		5 47 in			E		29000 KSI	
		t		0.26 in						
		s		13.4 in^3						
		J _x		13.4 ///						
Dead Load	lc									
	Moment	Mmax		12 65 k-in						
	Shear	V		0.83 k				(from CSiBridge Model)	
	Silear	• max		0.03 K						
Live Loads		Pedestrian and Vehicular loads act seperately								
	<u>Pedestrian</u>	<u>:</u>	PL		90 <i>psf</i>			/	AASHTO LRFD Ped Bridge 3	.1
		Weight	P _{PL} =	PL*A _{trib.} =		12.8	k	(two point loads of this ma	g.)
		Momei	nt M _{ma}	x	6.43 k-in			,	from (CiDridge Medel)	
		Shear	V_{max}		0.00 <i>k</i>			(from CSIBridge Model)	
	Vehicular:		LL		Truc	k 1	Truck 2			
			Tota	4		16.2	21.	19 /	K	
		Weight	t Axle	1 Wheels		6.08	7.	95 I	k	
			Axle	2 Wheels		2.03	2.	65 <i> </i>	k	
			whe	el spacing		6		6 f	ft	
			axle	spacing		6.58	8.	25 f	ft	
		Momei	nt M _{ma}	x	4.57 k-in			(From CSiBridge Model,	Truck 2
		Shear	V _{max}		0.08 <i>k</i>			C	controls)	
Capacity										
	Local Buck	ling Res	<u>istance</u>					/	AASHTO 6.10.8.2.2	
	$\lambda_{\rm f} = b_{\rm fc}/2t_{\rm fc}$	=			8.33			/	AASHTO 6.10.8.2.2-3	
	$\lambda_{pf} = 0.38* \sqrt{(E/F_{vc})} =$		9.15			1	AASHTO 6.10.8.2.2-4			

AASHTO 6.10.8.2.2-5

13.49

$\lambda_f < \lambda_{pf} \rightarrow$	$F_{nc} = R_b * R_h * F_{yc}$		AASHTC	0 6.10.8.2.2-1
	R _b	1	AASHTC	6.10.1.10.2
	R _h	1	AASHTC	6.10.1.10.1 (constructability is not checked)
	F _{nc} =	50 ksi		
<u>Lateral To</u>	rsional Buckling			AASHTO 6.10.8.2.3
L _b			9.5 <i>ft</i>	
$L_p = r_t * V(E_p)$	/F _{yc}) =		3.41 <i>ft</i>	AASHTO 6.10.8.2.3-4
$L_r = \pi^* r_t^* V(E/F_{yr}) =$			12.81 <i>ft</i>	AASHTO 6.10.8.2.3-5
L	$_{p}$ < L _b < L _r \rightarrow F _{nc}	= C _b [1-(1-F _{yr} /	(R _h F _{yc}))((L _b -L _p)/	$(L_r-L_p))]R_bR_hF_{yc} < R_bR_hF_{yc}$
	C _b = 1.75 - 1.05	$5(M_1/M_2) + 0.$	$3(M_1/M_2)^2 \le 2.$	3 AASHTO 6.10.8.2.3-7
	M _{2 (veh.)} =	4.6 <i>k-in</i>		largest moment at end of braced length
	M _{mid (veh.)} =	4.5 <i>k-in</i>		moment at middle of braced length
	M _{0 (veh.)} =	4.5 <i>k-in</i>		smallest moment at end of braced length
	$M_{1 (veh.)} = M_{0 (veh)}$.h.) =	4.5 <i>k-in</i>	AASTHO A6.3.3-12
	C _{b (vehicle)} =	1.01		
	M _{2 (ped.)} =	6.4 <i>k-in</i>		largest moment at end of braced length
	M _{mid (ped.)} =	6.1 <i>k-in</i>		moment at middle of braced length
	M _{0 (ped.)} =	5.7 <i>k-in</i>		smallest moment at end of braced length
	$M_{1 (ped.)} = M_{0 (peta)}$	ed.) =	5.7 <i>k-in</i>	AASTHO A6.3.3-12
	C _{b (ped.)} =	1.03		
	F _{nc (veh.)} =	40.6 <i>ksi</i>		
	F _{nc (ped.)} =	41.4 <i>ksi</i>		
<u>Tension Fl</u>	ange Flexural Re	esistance		
	$F_{nt} = R_h * F_{yt} =$		50 <i>ksi</i>	AASHTO 6.10.8.3-1
<u>Minimum</u>	Flexural Resista	nce		
$\Phi M_n = \Phi_f$	*S _x *min(F _{nc} ,F _{nt})			
	Φ_{f}	1		AASHTO 6.5.4.2
	ΦM _n =	543 k-in		
$Unstiffener \Phi V_{r} = \Phi V_{r}$	<u>ed Web Shear Re</u> / = Φ.CV	<u>sistance</u>		AASHTO 6.10.9.2
Ψ $n = \Psi_V V$	сг Фу с ур Ф.,	1		AASHTO 6 5 4 2

$V_p = 0.58 F_{yw} D^* t_w =$	41.2 <i>k</i>	AASHTO 6.10.9.2-2
D/t _w	21.0	
k	5	
1.12*V(E*k/F _{yw}) =	60.3	
if D/t _w < $1.12*V(E*k/F_{yw})$	\rightarrow C=1	
С	1	
$\Phi V_n = 41.2 \ k$		

RF =	<u>(C - γ</u>	_{Dc} DC - γ _{DW} DW +/- γ γ _{LL} LL(1+IM)	<u>₽</u> Р)	AASHTO MBE 6A.4.2.1-1			
	$C_{Str-I} = \Phi_0$	$_{2}\Phi_{s}\Phi_{n}R_{n}$		AASHTO MBE 6A.4.2.1-2			
		$\Phi_c \Phi_s \ge 0.85$		AASHTO MBE 6A.4.2.1-3			
		Φ_{s}	1	AASHTO MBE 6A.4.2.4			
	γ_{DC}	1.25					
	$\gamma_{\text{LL inv.}}$	1.75					
	γ _{LL op.}	1.35					
	IM	0		AASHTO LRFD Ped. Bridge Manual 3.2			

<u>Flexure</u>

Condition	Good	Fair	Poor
Φ_{c}	1	0.95	0.85
C [k-in]	543	516	462
$RF_{pedestrian}$ inventory	46.9	44.5	39.6
$RF_{pedestrian}$ operating	60.8	57.6	51.4
RF vehicle inventory	66.0	62.6	55.8
RF vehicle operating	85.6	81.2	72.4

<u>Shear</u>

Condition	Good	Fair	Poor
Φ_{c}	1	0.95	0.85
C [k]	41.2	39.2	35.1
RF _{pedestrian} inventory	1000	1000	1000
RF _{pedestrian} operating	1000	1000	1000
RF vehicle inventory	287	272	243
RF _{vehicle} operating	372	353	315

 $\lambda_{rf} = 0.56*V(E/F_{yr}) =$

South Suspension Bridge Load Rating (LRFR Method)

Crossbracing

<u>ci 0335i uc</u>	<u></u>							
	L	17.75	5 ft					
	Size	W6x15						
		b _f	5.99 in			F _{yc}	50 <i>ksi</i>	
		t _f	0.26 in			F _{yw}	50 <i>ksi</i>	
		r _t	1.66 in			$F_{vr} = 0.7F_{vc}$	35 <i>ksi</i>	
		d	5.99 in			E	29000 ksi	
		D	5.47 in					
		t _w	0.23 in					
		S _x	29.1 in ³					
Dead Load	s							
	Moment	M _{max}	11.2 <i>k-in</i>					
	Shear	V _{max}	0.25 <i>k</i>				(from CSiBridge Model)	
Live Loads		Pedestrian and Vehicular loads act seperately						
	<u>Pedestrian</u>	<u>lestrian:</u> PL 90 psf			AASHTO LRFD Ped Bridge 3.1			
		Moment	M _{max}	17.0 <i>k-in</i>			(from CSiBridge Model)	
		Shear	V _{max}	0.09 <i>k</i>				
	<u>Vehicular:</u>		LL	Trucl	k 1	Truck 2		
			Total		16.2	21.19	k	
		Weight	Axle 1 Wheels		6.08	7.95	k	
			Axie 2 Wheels		2.03	2.65	K ft	
			axle spacing		6.58	8.25	ft	
		Moment	M _{max}	44.0 k-in			(From CSiBridge Model,	Truck 2
		Shear	V _{max}	0.24 <i>k</i>			controls)	
Capacity								
	<u>Local Bu</u> ck	<u>ling Resis</u> ta	<u>ince</u>				AASHTO 6.10.8.2.2	
	$\overline{\lambda_{f}} = b_{fc}/2t_{fc}$	_ =		11.52			AASHTO 6.10.8.2.2-3	
	$\lambda_{pf} = 0.38^*$	√(E/F _{yc}) =		9.15			AASHTO 6.10.8.2.2-4	

AASHTO 6.10.8.2.2-5

13.49

$\lambda_{pf} < \lambda_f < \lambda_{rf} \rightarrow$	$F_{nc} = [1-(1-F_{yr}/R_{h}]$	$F_y)((\lambda_f - \lambda_{pf})/(\lambda_{rf} - \lambda_{pf}))]R_b$	R _h F _{yc} AASHTO 6.10.8.2.2-1
R _b	R _b 1		AASHTO 6.10.1.10.2
R _h	1	AASHTO 6.10.1	.10.1 (constructability is not checked)
F _{nc} =	41.8 <i>ksi</i>		
Lateral Torsional Buck	<u>ding</u>		AASHTO 6.10.8.2.3
L _b		17.75 <i>ft</i>	
$L_p = r_t^* V(E/F_{yc}) =$		3.33 <i>ft</i>	AASHTO 6.10.8.2.3-4
$L_r = \pi^* r_t^* V(E/F_{yr}) =$		12.51 <i>ft</i>	AASHTO 6.10.8.2.3-5
$L_b > L_r \rightarrow$	$F_{nc} = F_{cr} < R_b R_h F_{yc}$:	
$F_{cr} = C_b R_b \pi$	$^{2}E/(L_{b}/r_{t})^{2}$		
C _b =	1		
F _{cr} =	17.4 <i>ksi</i>		
F _{nc} =	17.4 <i>ksi</i>		
Tension Flange Flexur	al Resistance		
$F_{nt} = R_h * F_{yt}$	t =	50 <i>ksi</i>	AASHTO 6.10.8.3-1
Minimum Flexural Res	<u>sistance</u>		
$\Phi M_n = \Phi_f * S_x * \min(F_{nc},$	F _{nt})		
Φ_{f}	1		AASHTO 6.5.4.2
ΦM _n =	506 k-in		
Unstiffened Web Shea	ar Resistance		AASHTO 6.10.9.2
$\Phi V_n = \Phi_v V_{cr} = \Phi_v C V_p$			
Φ_{v}	1		AASHTO 6.5.4.2
V _p = 0.58*	F _{yw} *D*t _w =	36.5 <i>k</i>	AASHTO 6.10.9.2-2
D/t _w		23.8	
k		5	
1.12*√(E*I	k/F _{yw}) =	60.3	
if D/t _w < 1.	.12*V(E*k/ F_{yw}) →	C=1	
С		1	
ΦV _n =	36.5 <i>k</i>		

RF =	<u>(C - γ</u>	_{DC} DC - γ _{DW} DW +/- γ _P P) γ _{LL} LL(1+IM)	AASHTO MBE 6A.4.2.1-1		
	C _{Str-I} = Φ	$_{c}\Phi_{s}\Phi_{n}R_{n}$		AASHTO MBE 6A.4.2.1-2	
		$\Phi_c \Phi_s \ge 0.85$		AASHTO MBE 6A.4.2.1-3	
		Φ_{s}	1	AASHTO MBE 6A.4.2.4	
	γ_{DC}	1.25			
	$\gamma_{\text{LL inv.}}$	1.75			
	$\gamma_{\text{LL op.}}$	1.35			
	IM	0		AASHTO LRFD Ped. Bridge Manual 3.2	

Flexure

<u>Shear</u>

Condition	Good	Fair	Poor
Φ_{c}	1	0.95	0.85
C [k-in]	506	481	430
RF pedestrian inventory	16.6	15.7	14.0
RF pedestrian operating	21.5	20.4	18.2
RF _{vehicle inventory}	6.38	6.06	5.40
RF vehicle operating	8.28	7.85	7.00
Condition	Good	Fair	Poor
Condition	GUUU		F001
Φ_{c}	1	0.95	0.85
C [k]	36.5	34.7	31.0
RF pedestrian inventory	230	218	195
RF pedestrian operating	298	283	253
RF _{vehicle inventory}	85.8	81.5	72.8

111

106

94.4

 $\textbf{RF}_{\text{vehicle operating}}$

South Suspension Bridge Load Rating (LRFR Method)

Hanger Cables

	Size	¹¹ / ₁₆ "		(Structural Steel Strand ASTM - A586, Class A Coating)				
		A _g Breaking F E	0.284 in ² orce 58 24000 ksi	k		(from Bethlehem Wire Rope catalog)		
Dead Load	s							
	Axial	P _{max}	8.66 <i>k</i>			(from CSiBridge Model)		
Live Loads		Pedestrian	and Vehicular loa	ads act sepe	rately	Y		
	<u>Pedestrian</u>	<u>:</u>	PL	90 <i>psf</i>		AASHTO LRFD Ped Bridge 3.1		
		Axial	P _{max}	6.51 <i>k</i>		(from CSiBridge Model)		
	<u>Vehicular:</u>		LL	Truck	1	Truck 2		
			Total		16.2	21.19 <i>k</i>		
		Weight	Axle 1 Wheels		6.08	7.95 <i>k</i>		
			Axle 2 Wheels		2.03	2.65 <i>k</i>		
			wheel spacing		6	6 ft		
			axie spacing		0.58	8.25][
		Axial	P _{max}	1.64 <i>k</i>		(From CSiBridge Model, Truck 2 controls)		
Capacity								
	<u>Tensile Rei</u>	<u>stance</u>						
	$\Phi P_n = \Phi_u F_v$,A _n R _p U				AASHTO 6.8.2.1-2		
		Φ _u	0.8			AASHTO 6.5.4.2		
		$F_vA_n = Brea$	aking Force					
		, R _n	10					
		U	1.0					
	ΦP _n =	46.4	k					
	•							
Rating Fac	tors							
	RF =	<u>(C - γ_{DC})</u>	<u>DC - γ_{DW}DW +/- γ</u> γ _{LL} LL(1+IM)	<u>∍P)</u>		AASHTO MBE 6A.4.2.1-1		
		$C_{Str-I} = \Phi_c \Phi$	$P_{s}\Phi_{n}R_{n}$			AASHTO MBE 6A.4.2.1-2		
			$\Phi_c \Phi_s \ge 0.85$			AASHTO MBE 6A.4.2.1-3		
			Φ _s	0.85		AASHTO MBE 6A.4.2.4		

γ _{DC}	1.25	
$\gamma_{\text{LL inv.}}$	1.75	
YLL op.	1.35	
IM	0	AASHTO LRFD Ped. Bridge Manual 3.2

<u>Axial</u>

Condition	Good	Fair	Poor
Φ_{c}	1	0.95	0.85
C [k]	39.4	39.4	39.4
RF pedestrian inventory	2.51	2.51	2.51
RF pedestrian operating	3.26	3.26	3.26
RF vehicle inventory	9.97	9.97	9.97
$RF_{vehicle operating}$	12.9	12.9	12.9

South Suspension Bridge Load Rating (LRFR Method)

Main Cables

	Size	$2^{1}/_{2}$ "		(Structural Steel Rope - ASTM A603, Class A Coating)				
		Ag	2.97 in ²					
		Nominal St	rength 576	k		(from Beth	lehem Wire Rope catalog)	
		E	20000 ksi					
Dead Load	S	D				/(
	Axial	P _{max}	131.0 <i>k</i>			(from CSIBI	ridge Model)	
Live Loads		Pedestrian	and Vehicular loa	ads act sene	ratel	1		
	Pedestrian	:	PL	90 psf	ratery	1	AASHTO LRFD Ped Bridge 3.1	
		_					5	
		Axial	P _{max}	94.8 <i>k</i>			(from CSiBridge Model)	
	Vehicular:		LL	Truck	1	Truck 2		
			Total		16.2	21.19	k	
		Weight	Axle 1 Wheels		6.08	7.95	k	
			Axle 2 Wheels		2.03	2.65	k	
			wheel spacing		6	6	ft	
			axle spacing		6.58	8.25	ft	
		Axial	P _{max}	18.0 <i>k</i>		(From CSiB	ridge Model, Truck 2 controls)	
Capacity								
capacity	Tensile Rei	stance						
	$\Phi P_n = \Phi_n F_n$,A _n R _n U				AASHTO 6.	8.2.1-2	
		Φ.,	0.8			AASHTO 6.	5.4.2	
		$F_v A_n = Brea$	aking Force					
		R _n	1.0					
		U	1.0					
	ΦP _n =	576	k					
Rating Fac	tors							
		(C - Vaal	DC - yawDW/ +/- ya	P)				
	RF =		<u>ν, LL(1+IM)</u>	<u></u>		AASHTO M	BE 6A.4.2.1-1	
		$C_{Str-I} = \Phi_c \Phi$	$P_{s}\Phi_{n}R_{n}$			AASHTO M	BE 6A.4.2.1-2	
			$\Phi_c \Phi_s \ge 0.85$			AASHTO M	BE 6A.4.2.1-3	
			Φ _s	0.85		AASHTO M	BE 6A.4.2.4	

γ _{DC}	1.25	
YLL inv.	1.75	
YLL op.	1.35	
IM	0	AASHTO LRFD Ped. Bridge Manual 3.2

<u>Axial</u>

Condition	Good	Fair	Poor
Φ_{c}	1	0.95	0.85
C [k]	490	490	490
RF _{pedestrian} inventory	1.96	1.96	1.96
RF pedestrian operating	2.55	2.55	2.55
RF vehicle inventory	10.4	10.4	10.4
RF vehicle operating	13.4	13.4	13.4

South Suspension Bridge Load Rating (LRFR Method)

Backstay Cables

	Size	$d = 2^{7}/_{8}$ "				(S ¹	tructu	ural Steel St	rand ASTM - A586, Class A Coating)
		A _g Nominal St E	4.94 trength 23000	in ² 988 ksi		k		(from Beth	lehem Wire Rope catalog)
	Size	d = 3"				(St	tructu	ural Steel St	rand ASTM - A586, Class A Coating)
		A _g Nominal St E	5.38 trength 23000	in ² 1076 ksi	6	k		(from Beth	lehem Wire Rope catalog)
Dead Load	S		2 ⁷ / ₈ "		3"				
	Axial	P _{max}	232.1		185.2	k		(from CSiB	ridge Model)
Live Loads		Pedestrian	and Vehicu	ılar lo	oads ac	t sepe	rately	/	
	<u>Pedestrian</u>	<u>.</u>	PL		90	psf			AASHTO LRFD Ped Bridge 3.1
			_		2 ′/ ₈ "		3"		
		Axial	P _{max}		161.9	-	126.8	k	(from CSiBridge Model)
	<u>Vehicular:</u>		LL			Truck	1	Truck 2	
			Total				16.2	21.19	k
		Weight	Axle 1 Whe	eels			6.08	7.95	k
			Axle 2 Whe	eels			2.03	2.65	k
			wheel space	cing			6	6	ft
			axle spacin	ıg			6.58	8.25	ft
					2 ⁷ / ₈ "		3"		
		Axial	P _{max}		30.4		23.9	k	(from CSiBridge Model, Truck 2)

Capacity

<u>Tensile Reistan</u>	се	
$\Phi P_n = \Phi_u F_y A_n R_p$,U	
Φ_{u}		0.8
F _y A _r	n = Breakin	g Force
R _p		1.0
U		1.0
	2 ⁷ / ₈ "	3"
ΦP _n =	790	861 <i>k</i>

RF =	<u>(C - γ</u> Γ	_{ac} DC - γ _{DW} DW +/· γ _{LL} LL(1+IM)	- γ _Ρ Ρ)	AASHTO MBE 6A.4.2.1-1	
	$C_{Str-I} = \Phi_{c}$	$\Phi_{s}\Phi_{n}R_{n}$		AASHTO MBE 6A.4.2.1-2	
		$\Phi_c \Phi_s \ge 0.85$		AASHTO MBE 6A.4.2.1-3	
		Φ_{s}	0.85	AASHTO MBE 6A.4.2.4	
	γ _{dc}	1.25			
	$\gamma_{\text{LL inv.}}$	1.75			
	YLL op.	1.35			
	IM	0		AASHTO LRFD Ped. Bridge Manual 3.	.2

<u>Axial</u>			2 ⁷ / ₈ "			3"	
	Condition	Good	Fair	Poor	Good	Fair	Poor
	Φ _c	1	0.95	0.85	1	0.95	0.85
	C [k]	672	672	672	732	732	732
	RF pedestrian inventory	1.35	1.35	1.35	1.56	1.56	1.56
	RF pedestrian operating	1.75	1.75	1.75	2.02	2.02	2.02
	RF vehicle inventory	7.17	7.17	7.17	8.29	8.29	8.29
	RF vehicle operating	9.29	9.29	9.29	10.7	10.7	10.7

0.11*E/F_y 63.8

Q

1.0

South Suspension Bridge Load Rating (LRFR Method)

S reader B

<u>Spreader</u>	Bars					
	Size	d = 3"				
		Ag	2.08 in ²			
		L	9.5 <i>ft</i>			
		D _{outside}	3.5 in ²			
		d _{inside}	3.07 in ²			
		t	2.16 in			
		r,	1.17 in			
		F	50 <i>ksi</i>			
		ry F	2000 ksi			
		L	29000 KSI			
Deadload	c					
Deau Loau	. Axial	Pmax	11.9 <i>k</i>			(from CSiBridge Model)
		IIIdA				(
Live Loads		Pedestrian	and Vehicular loa	ads act sepe	rately	у
	<u>Pedestrian</u>	<u>:</u>	PL	90 <i>psf</i>		AASHTO LRFD Ped Bridge 3.1
			_			
		Axial	P _{max}	8.60 <i>k</i>		(from CSiBridge Model)
	Vehicular:		LL	Truck	1	Truck 2
	<u></u>		Total		16.2	21.19 k
		Weight	Axle 1 Wheels		6.08	7.95 <i>k</i>
		5	Axle 2 Wheels		2.03	2.65 <i>k</i>
			wheel spacing		6	6 ft
			axle spacing		6.58	8.25 ft
		Axial	P _{max}	1.61 <i>k</i>		(From CSiBridge Model, Truck 2 controls)
Capacity						
	Compressio	on Resistan	ce			AASHTO 6.9.4.1.1
	K	0.65				AASHTO 4.6.2.5
	Φ _c	0.9				AASHTO 6.5.4.2
		π ² F*A ₂				
	P _e =	$(K^* / r_{-})^2$				AASHTO 6.9.4.1.2-1
	$P_{o} = QF_{v}A_{a}$	(11 1/15)				AASHTO 6.9.4.1.1
	o -∙y g					
	D	3.5	in			
	t	2.160	in			
	D/t	1.6				
			→ Nonslende	er		

AASHTO 6.9.4.2

P _e	148 <i>k</i>		AASHTO 6.9.4.1.2-1
Po	104 <i>k</i>		AASHTO 6.9.4.1.1
$P_e/P_o =$	1.43		
$P_{e}/P_{o} > 0.$	44 →		
	P _n = (0.658^	(P _o /P _e))P _e	AASHIU 0.9.4.1.1-1
	P _n =	77.6 <i>k</i>	
	ΦP _n =	69.8 <i>k</i>	

RF =	<u>(C - γ</u>	γ _{DC} DC - γ _{DW} DW +/- γ _P P) γ _{LL} LL(1+IM)		AASHTO MBE 6A.4.2.1-1
	С _{Str-I} = Ф	$\Phi_c \Phi_s \Phi_n R_n$		AASHTO MBE 6A.4.2.1-2
		$\Phi_c \Phi_s \ge 0.85$		AASHTO MBE 6A.4.2.1-3
		Φ_{s}	1	AASHTO MBE 6A.4.2.4
	γ_{DC}	1.25		
	$\gamma_{\text{LL inv.}}$	1.75		
	$\gamma_{\text{LL op.}}$	1.35		
	IM	0		AASHTO LRFD Ped. Bridge Manual 3.2

<u>Axial</u>

Condition	Good	Fair	Poor
Φ _c	1	0.95	0.85
C [k]	69.8	66.3	59.3
$RF_{pedestrian\ inventory}$	3.65	3.42	2.95
$RF_{pedestrian}$ operating	4.73	4.43	3.83
RF vehicle inventory	19.5	18.3	15.8
RF _{vehicle operating}	25.3	23.7	20.5

South Suspension Bridge Load Rating (LRFR Method)

Hanger Bolts

		d	0.75 in			
		d_{actual}	0.50 in			(Accounts for corrosion)
		$d_{threads}$	0.65 in			(Based on equation AASTHO 6.13.2.10.2-1)
		A _b	0.44 in ²			
		A _{b actual}	0.20 in ²			
		Fub	120 <i>ksi</i>			(A325 Bolts)
		E	29000 ksi			
Dead Load	s	Forc	e in hanger bolts =	= hanger str	and fo	orce divided by four (number of bolts/hanger)
	Axial	P_{max}	2.16 <i>k</i>	0		(from CSiBridge Model)
Live Loads		Pedestrian	and Vehicular loa	ds act sepe	rately	/
	<u>Pedestrian</u>	<u>:</u>	PL	90 <i>psf</i>		AASHTO LRFD Ped Bridge 3.1
		Axial	P _{max}	1.63 <i>k</i>		(from CSiBridge Model)
	Vehicular:		LL	Truck	1	Truck 2
			Total		16.2	21.19 <i>k</i>
		Weight	Axle 1 Wheels		6.08	7.95 <i>k</i>
			Axle 2 Wheels		2.03	2.65 <i>k</i>
			wheel spacing		6	6 <i>ft</i>
			axle spacing		6.58	8.25 <i>ft</i>
		Axial	P _{max}	0.41 <i>k</i>		(From CSiBridge Model, Truck 2 controls)
Capacity						

<u>Tensile l</u>	<u>Reistance</u>		
If $d_{threads}$	$_{s} < d_{actual}$:		
	$\Phi T_n = \Phi_t 0$	76A _b F _{ub}	AASHTO 6.13.2.10.2-1
If $d_{threads}$	$_{s} > d_{actual}$:		
	$\Phi T_n = \Phi_t A_n$	$_{bactual}F_{ub}$	AASHTO 6.13.2.10.2-1
	Φ_t	0.8	AASHTO 6.5.4.2
ΦT _n =	18.8	5 k	

RF =	<u>(C - γ</u>	_{DC} DC - γ _{DW} DW +/- γ _P P) γ _{LL} LL(1+IM)		AASHTO MBE 6A.4.2.1-1
	$C_{Str-I} = \Phi_{i}$	$_{c}\Phi_{s}\Phi_{n}R_{n}$		AASHTO MBE 6A.4.2.1-2
		$\Phi_c \Phi_s \ge 0.85$		AASHTO MBE 6A.4.2.1-3
		Φ_{s}	1	AASHTO MBE 6A.4.2.4
	γ_{DC}	1.25		
	$\gamma_{\text{LL inv.}}$	1.75		
	Υ LL op.	1.35		
	IM	0		AASHTO LRFD Ped. Bridge Manual 3.2

<u>Axial</u>

Condition	Good	Fair	Poor
Φ_{c}	1	0.95	0.85
C [k]	18.8	17.9	16.0
$RF_{pedestrian}$ inventory	5.67	5.34	4.68
$RF_{pedestrian operating}$	7.35	6.92	6.06
RF vehicle inventory	22.5	21.2	18.6
$RF_{vehicle}$ operating	29.2	27.5	24.1

Concrete Pylons

d 30 <i>in</i>	
A_g 707 in ²	
A_{bars} 1.56 in ²	
N _{bars} 22 in	
$A_{spiral bars}$ 0.11 in ²	
p _{spiral bars} 1.75 in	
f _v 60 ksi	
clear cov. 1.5	
f' _c 5 <i>ksi</i>	
γ _c 0.16 <i>kcf</i>	
β ₁ 0.85	
L _{max} 57.25 <i>ft</i>	
Dead Loads Self Weight of deck is only dead load	
$Weight W_{pl} = 45.0 \ k$	
Moment $M_{pl} = 84.5 \ k$ -in	
Axial $P_{DL} =$ 411 k(From CSiBridge Model)	
Live Loads Pedestrian and Vehicular loads act senerately	
Pedestrian Pl 90 nsf AASHTO LRED Ped	Bridge 3.1
$\frac{1}{15 \text{ k/pvlon}}$	bridge off
Moment $M_{\rm Pl} = 3400 \ k \cdot in$	
Axial P_{PL} = 265 k (From CSiBridge M	odel)
<u>Vehicular:</u> LL Truck 1 Truck 2	
Veight Avia 1 Wheels 6.08 7.05 k	
$\Delta x = 2 \text{ Wheels} \qquad 2.03 \qquad 2.65 \text{ k}$	
wheel spacing $6 6 ft$	
axle spacing 6.58 8.25 ft	
•••	
Moment M _{II} = 639 k-in (From CSiBridge M	odel. Truck 2

Capacity				
	<u>Compressi</u>	on + Flexure		AASHTO MBE Appendix G6A
	$e_1 = M_{LL}/P_L$	L		
		e _{1 ped.} =	12.8 in	
		e _{1 vehicle} =	12.9 in	
	$e_2 = M_{DL}/P$	DL		
		e ₂ =	0.21 in	
	ФМ _{п ped.} =	14700 k-in		
	$\Phi M_{n \text{ veh.}} =$	14640 k-in		(From EnColumn)
	$\Phi P_{n ped.} =$	1625 <i>k</i>		(From Speciumn)
	$\Phi P_{n \text{ veh.}}$ =	1630 <i>k</i>		

*The capacity for concrete elements in compression and bending is determined from a P-M interaction diagram. The axial and bending capacities are assumed to be the values at the edge of the interaction diagram along the line that connects the factored dead and the factored live plus dead combined loading responses. Rating factors are calculated for both the max axial and bending conditions.

RF =	<u>(C - γ</u>	_{'DC} DC - γ _{DW} DW +/- γ _{LL} LL(1+IM)	- γ _P P)	AASHTO MBE 6A.4.2.1-1	
	С _{Str-I} = Ф	$_{c}\Phi_{s}\Phi_{n}R_{n}$		AASHTO MBE 6A.4.2.1-2	
		$\Phi_c \Phi_s \ge 0.85$		AASHTO MBE 6A.4.2.1-3	
		Φs	0.85	AASHTO MBE 6A.4.2.4	
	γ_{DC}	1.25			
	$\gamma_{\text{LL inv.}}$	1.75			
	YLL op.	1.35			
	IM	0		AASHTO LRFD Ped. Bridge Manual 3.	2

Flexure

Condition	Good	Fair	Poor
Φ_{c}	1	0.95	0.85
C [k-in]	12495	12495	12495
RF pedestrian inventory	2.08	2.08	2.08
RF pedestrian operating	2.70	2.70	2.70
C [k-in]	12444	12444	12444
RF vehicle inventory	11.0	11.0	11.0
RF vehicle operating	14.3	14.3	14.3

<u>Axial</u>

Condition	Good	Fair	Poor
Φ _c	1	0.95	0.85
C [k]	1381	1381	1381
RF pedestrian inventory	1.87	1.87	1.87
RF pedestrian operating	2.43	2.43	2.43
C [k]	1386	1386	1386
RF vehicle inventory	10.1	10.1	10.1
RF vehicle operating	13.0	13.0	13.0

South Suspension Bridge Load Rating (LRFR Method)

Summary

*Floorbeams are in fair condition ($\Phi_c = 0.95$) and Deck is in poor condition ($\Phi_c = 0.85$) *All other members are in good condition ($\Phi_c = 1$)

Controlling Rating	Pedestrian			Vehicle		
Factor & Failure Force	Force	Inventory	Operating	Force	Inventory	Operating
Deck	Flexure	0.51	0.66	N/A	N/A	N/A
Girders	Flexure	2.76	3.58	Flexure	1.59	2.06
Floorbeams	Flexure	44.5	57.6	Flexure	62.6	81.2
Crossbracing	Flexure	16.6	21.5	Flexure	6.38	8.28
Hanger Cables	Axial	2.51	3.26	Axial	9.97	12.9
Main Cables	Axial	1.96	2.55	Axial	10.4	13.4
Backstay Cables	Axial	1.56	2.02	Axial	8.29	10.7
Spreader Bars	Axial	3.65	4.73	Axial	19.5	25.3
Hanger Bolts	Axial	4.68	6.06	Axial	18.6	24.1
Pylons	Axial	1.87	2.43	Axial	10.1	13.0

APPENDIX D

PHOTOGRAPH LOG PHOTOGRAPH CONTACT SHEET

1601 Fifth Avenue, Suite 1600 Seattie, WA 98101 (206) 622-5822 fax (206) 622-8130

Project	Riverfront Park Bridges Inspection	By	M. Frymoyer	Sheet No.
Location	Spokane	Date	9/26/2014	1 OF8
Client	City of Spokane			Job No.
Inspection	Photo Log			114176.12

Bridge Name:

South Suspension Bridge

Date of Inspection: 9/2/14-9/5/14

Camera No.	Photo No.	Location	Notes	Ву
A	195	Btwn Pier 1 /H1	Spall in deck	JPG
A	196	H1 left curb	Typical condition of curb at hanger - cracks/spalls	JPG
A	197	H1-H2 right curb	Chipped concrete in curb	JPG
A	198	H2-H3 left curb	Typical curb conditon	JPG
A	200	H3-H4 deck	Minor deck chipping, major delamination, typical	JPG
A	201	H4-H5 deck	Rusting coming through deck, delamination, typical	JPG
A	202	H5-H6 deck	Typical transverse crack, delamination	JPG
A	203	H7-H8 deck	Major delamination and crack	JPG
A	204	H9-H10 curb	Major spalling, exposed rebar, material loss	JPG
A	205	H9-H10 curb	Major spalling, exposed rebar, material loss	JPG
A	206	H9-H10 curb	Typical curb cracking, spalling	JPG
A	207	H12 curb	Typical curb erosion at hanger	JPG
A	208	H12-H13 curb	Major spalling, exposed rebar, material loss	JPG
A	209	H13 curb	Typical crack at hanger	JPG
A	210	North end	Large crack at end of deck	JPG
A	212	South end right curb	Major spalling, exposed rebar, material loss and hole in the deck	JPG
A	213	H6-H7 curb	Exposed rebar at light	JPG
A	214	H12-H13 curb	Spalling, exposed rebar at light fixture	JPG
A	215	H1 RT	Spalling on underside of deck	PG
A	216	H1 RT	Typical floorbeam corrosion/flaking	PG
A	217	Pier 1	General view of abutment	PG
A	218	Pier 1	General view of abutment	PG
A	219	Pier 1	General view of abutment	PG
A	220	H1 RT	Flaking and pitting of bottom flange	PG
А	221	H1	Lateral bracing	PG
A	222	H1	Floorbeam, SIP forms	PG
A	223	H1 RT	Flaking and pitting of bottom flange	PG
A	224	H1 RT	Flaking and pitting of bottom flange	PG
A	225	H2 RT	Hanger rods on inside showing minor corrosion	PG
A	226	H2 RT	Hanger rods on inside showing minor corrosion	PG
A	227	H2 RT	Hanger rods on inside showing minor corrosion	PG
A	228	H2 RT	Soffit deterioration - exposed concrete	PG
A	229	H2 RT	Soffit deterioration - exposed concrete	PG
A	230	H2 RT	Soffit deterioration - exposed concrete	PG
A	231	H2 RT	Soffit deterioration - exposed concrete	PG
A	232	H2 LT	Debris (bird's next) at panel point	PG
A	233	H3 RT	1/16" section loss at bottom flange	PG
A	234	H3 RT	Bottom flange	PG
A	236	H3 RT	Cable hanger rods on inside moderate corrosion	PG
A	237	H3 RT	Cable hanger rods on inside moderate corrosion	PG
A	238	H3 RT	Cable hanger rods on inside moderate corrosion	PG
A	239	H3	Soffit deterioration - exposed concrete	PG
A	240	H3	Soffit deterioration - exposed concrete	PG
A	241	H3 RT	Bottom flange	PG
A	251	H8 LT	Girder splice pack rust at web plate	PG

1601 Fifth Avenue, Suite 1600 Seattle, WA 98101 (206) 622-5822 fax (206) 622-8130

Project	Riverfront Park Bridges Inspection	Ву	M. Frymoyer	Sheet No.		
Location	Spokane	Date	9/26/2014	2 OF8		
Client	City of Spokane			Job No.		
Inspection	Inspection Photo Log					

Bridge Name:

South Suspension Bridge

Date of Inspection:

Camera No.	Photo No.	Location	Notes	Ву
A	252	H8 LT	Inside hanger bolt connection	PG
٩	253	H8 LT	Inside hanger bolt connection	PG
A	254	H8 LT	Girder bottom flange is flaking	PG
A	255	H8 LT	Girder bottom flange is flaking	PG
A	256	H8 LT	SIP deck form is corroded	PG
A	257	H8 LT	SIP deck form is corroded	PG
A	261	H10 LT	SIP deck form is corroded, spall	PG
A	298	H11 RT	Girder splice, good condition	JPG
A	300	H11 RT	Girder splice, good condition	JPG
A	301	H11 RT	Floorbeam - flaking, corrosion	JPG
A	302	H11 RT	SIP deck corroded with missing/exposed deck concrete	JPG
A	303	H11 RT	SIP deck corroded with missing/exposed deck concrete	JPG
A	304	H12 RT	Cable hanger rods on inside moderate corrosion	JPG
A	305	H12 RT	SIP deck corroded	JPG
A	307	H13 RT	Debris built up in hanger connection	JPG
A	310	H13 RT	SIP deck corroded	JPG
A	312	H13 RT	Right girder - bearing and brace connection	JPG
A	313	H13 RT	Right girder - bearing and brace connection	JPG
A	314	H13 RT	Right girder - bearing and brace connection	JPG
A	315	H13 RT	Floorbeam and conduit rollers are corroded	JPG
A	316	H13 RT	Floorbeam and conduit rollers are corroded	JPG
A	432	Pier 1	Abutment seat	MLF
A	433	Pier 1	Abutment seat	MLF
A	434	Pier 1	Abutment seat/bearing	MLF
A	435	Pier 1	Lateral bracing	MLF
A	436	General	Floor system, looking north	MLF
A	437	Pier 1	Abutment seat/bearing	MLF
A	438	Pier 1	Abutment seat/bearing	MLF
A	439	Pier 1	Abutment seat/bearing	MLF
A	440	Pier 1	Abutment seat/bearing	MLF
С	2248	H5 LT	1/8" pack rust at splice	MLF
С	2249	H5 LT	1/8" pack rust at splice	MLF
С	2250	H5 RT	Corrision at connection	MLF
С	2251	H5 RT	Corrision at connection	MLF
С	2252	H6 RT	Girder web flaking	MLF
С	2253	H6 RT	Girder web flaking	MLF
С	2254	H6 RT	Girder web flaking	MLF
С	2255	H6 RT	Girder web flaking	MLF
С	2257	H6 LT	Girder top flange corrosion/flaking	MLF
С	2258	H7 RT	Corrosion at connection	MLF
С	2259	H7 LT	Minor corrosion at girder splice	MLF
С	2260	H7 LT	Inside of girder web flaking	MLF
0	2222	H11 T	Deck soffit typical	PG

1601 Fifth Avenue, Suite 1600 Seattle, WA 98101 (206) 622-5822 fax (206) 622-8130

Project	Riverfront Park Bridges Inspection	Ву	M. Frymoyer	Sheet No.	
Location	Spokane	Date	9/26/2014	3 OF8	
Client	City of Spokane			Job No.	
Inspection	Inspection Photo Log				

Bridge Name:

South Suspension Bridge

Date of Inspection:

Camera No.	Photo No.	Location	Notes	Ву
С	2323	H11 LT	Deck soffit, typical	PG
С	2324	H12 LT	Outside hanger bolt connection	PG
С	2325	H12 LT	Outside of girder	PG
С	2326	H12 LT	Outside of girder	PG
С	2327	H12 LT	Diagonal bracing, looking north	PG
С	2328	H12 LT	Floorbeam	PG
С	2329	H12 LT	Diagonal bracing, looking south	PG
С	2330	H12 LT	Deck soffit, typical	PG
С	2331	H12 LT	Inside hanger bolt connection	PG
С	2332	H12 LT	Inside hanger bolt connection	PG
С	2333	H13 LT	Outside hanger bolt connection	PG
С	2334	H13 LT	Outside of girder	PG
С	2335	H13 LT	Outside of girder	PG
С	2336	H13 LT	Inside of girder	PG
С	2338	H13 LT	Inside of girder	PG
С	2339	H13	Floorbeam	PG
С	2340	H13	Floorbeam	PG
С	2341	H13	Floorbeam	PG
С	2342	H13	Floorbeam	
2	4	H13 RT	Anchor bolts	TW
2	7	H13 LT	Left inside hanager bolt connection	TW
2	9	H13 LT	Left inside hanager bolt connection	TW
2	10	General	SIP deck form corrosion	TW
2	11	General	SIP deck form corrosion	TW
2	12	General	Steel framing plan	TW
2	13	Abutment 1	Vault/Power House	TW
2	19	H13 RT	Lateral brace connection	TW
2	20	FB 1-13	Corroded floorbeam and conduit supports	TW
2	21	FB 1-13	Corroded floorbeam and conduit supports	TW
2	22	H13 LT	Lateral brace connection	TW
2	23	FB 1-13	SIP deck form corrosion	TW
2	25	H13 LT	Lateral brace connection	TW
2	26	H13 LT	Lateral brace connection	TW
2	27	H13 LT	Anchor bolts	TW
2	28	Abutment 2	Crack in rock wall	TW
2	29	FB 1-13	Corroded floorbeam and conduit supports	TW
2	32	General	View of exterior airder	TW
2	33	H12 LT	Outside hanger bolt connection	TW
2	34	H13 RT	Outside hanger bolt connection	TW
2	35	H13 RT	Outside hanger bolt connection	TW
2	36	H13 RT	Outside hanger bolt connection	TW
2	37	H13 RT	Outside hanger bolt connection	TW
2	38	General	View of exterior girder	TW
2	39	Abutment 2	Betaining wall, right side of bridge	TW
2	40	Abutment 2	Retaining wall/fence right side of bridge	TW

1601 Fifth Avenue, Suite 1600 Seattle, WA 98101 (206) 622-5822 fax (206) 622-8130

Project	Riverfront Park Bridges Inspection	Ву	M. Frymoyer	Sheet No.
Location	Spokane	Date	9/26/2014	4 OF8
Client	City of Spokane			Job No.
Inspection	Photo Log			114176.12

Bridge Name:

South Suspension Bridge

Date of Inspection:

Camera No.	Photo No.	Location	Notes	Ву
7	5170	H1 LT	Corrosion at SW lower hanger at curb, 1/16" section loss of rod	PG
7	5171	H4 LT	Typical surface corrosion on lower hangers	PG
7	5172	H5 RT	Corrosion at SE lower hnager bar at curb, 1/16" section loss (necking)	PG
7	5173	H6 RT	Spalls on curb at railing embedment plate	PG
7	5174	H6 RT	Weld btw. Rail post and embedment plate appears to have failed, but	PG
7	5175	H9 LT	8 ft. of handrail is mising bolts just north of H9 LT	PG
7	5176	H10 - H11 RT	Missing handrail bolts between H10 and H11	PG
7	5177	H4 - H5 RT	Missing handrail bolts between H4 and H5	PG
7	5181	H1-H2 LT	Significant flaking (no section loss)	JPG
7	5182	FB 1-1	Floorbeam flaking	JPG
7	5184	South of FB 1-1	SIP forms corrosion/have holes	JPG
7	5185	H2	Rollers for conduits are rusting	JPG
7	5186	Pier 1	South abutment	JPG
7	5187	FB 1-2	Corroded tie-rods	JPG
7	5188	South of FB 1-2	SIP forms corrosion/have holes	JPG
7	5190	South of FB 1-2	SIP forms corrosion/have holes	JPG
7	5192	H2 LT	Debris at girder connection	JPG
7	5197	H3 LT	Typical hanger bolt corrosion	JPG
7	5199	H3 - H4 LT	Typical girder splice	JPG
7	5200	H3 - H4 LT	Girder top of web flaking at splice	JPG
7	5205	H3	Corroded SIP forms, missing concrete	JPG
7	5206	H3 North	Typical deck soffit looking north	JPG
7	5207	H3 South	Typical deck soffit looking south	JPG
7	5208	H4 RT	Outside hanger bolt connection	BK
7	5209	H4 BT	Outside hanger bolt connection	вк
7	5210	H4 BT	SIP deck corrosion	BK
7	5211	H4 RT	Inside hanger bolt connection corrosion	ВК
7	5212	H4 RT	Inside of gider web flaking	BK
7	5213	H4 RT	Inside hanger bolt connection corrosion	BK
7	5214	H4 BT	General framing looking south towards Pier 1	вк
7	5217	H4 RT	Loss of SIP formwork	BK
7	5218	H5 BT	Girder splice in good condition	вк
7	5219	H5 RT	Outside hanger bolt connection	BK
7	5220	H5 RT	Lateral bracing connection	BK
7	5221	H5 BT	Girder splice in good condition	BK
7	5222	H5 BT	Floorbeam bottom flange corrosion	BK
7	5223	H5 BT	Lateral bracing connection corrosion	BK
. 7	5224	H5 BT	Lateral bracing connection corresion	BK
7	5225	H5 RT	~1/2" section loss in lateral brace	BK
7	5226	H5 RT	General view of soffit	BK
7	5228	H6 RT	Outside hanger bolt connection	BK
7	5229	H6 RT	Corrosion at floorbeam to girder connection	BK
7	5230	H6 RT	Corrosion at connection	ВК
7	5231	H6 RT	Inside hanger bolt connection corrosion	BK
7	5232	H6 RT	Inside hanger bolt connection corrosion	BK
7	5233	H6 RT	5/16" section loss girder top flange (measured w/ D-meter)	BK

1601 Fifth Avenue, Suite 1600 Seattle, WA 98101 (206) 622-5822 fax (206) 622-8130

Project	Riverfront Park Bridges Inspection	By	M. Frymoyer	Sheet No.
Location	Spokane	Date	9/26/2014	5 OF8
Client	City of Spokane			Job No.
Inspection	114176.12			

Bridge Name:

South Suspension Bridge

Date of Inspection:

Camera No.	Photo No.	Location	Notes	Ву
7	5234	H6 RT	Corrosion at floorbeam to girder connection	BK
7	5235	H6 RT	Corrosion at top of floorbeam and SIP deck	BK
7	5236	H6 RT	Corrosion at floorbeam to girder connection	BK
7	5237	H6 RT	General view of bottom of girder	BK
7	5238	H6 RT	Corrosion SIP deck	BK
7	5239	H7 RT	Girder splice in good condition	BK
7	5240	H7 RT	Section loss/piting of bottom flange lateral brace	BK
7	5241	H7 RT	Corrosion at lateral brace connection	BK
7	5242	H7 RT	Corrosion at lateral brace connection	BK
7	5243	H7 RT	Corrosion at lateral brace connection	BK
7	5244	H7 RT	Corrosion at lateral brace connection	BK
7	5245	H7 RT	Corrosion at lateral brace connection	BK
7	5246	H7 RT	Corrosion at lateral brace connection	BK
7	5247	H7 RT	Corrosion at lateral brace connection	BK
7	5249	H8 RT	SIP deck, conduits	BK
7	5252	H9 RT	Inside hanger bolt connection corrosion	JPG
7	5254	H9 RT	SIP deck corrosion	JPG
7	5255	H9 RT	Girder splice	JPG
7	5256	H9 RT	Floorbeam, SIP deck corrosion	JPG
7	5257	H9 RT	Girder splice	JPG
7	5261	H10 RT	Hanger connection moderate corrosion	JPG
7	5262	H10 RT	Formwork corrosion, typical	JPG
7	5263	H10 RT	Floorbeam flaking, typical	JPG
7	5428	Pier 1	Abutment seat	PG
7	5429	Pier 1	Abutment seat	PG
7	5430	Pier 1	Corroded bearing	PG
7	5431	Pier 1	Abutment seat	PG

A	441	NW Anchor	General, anchor block	MLF
A	442	NW Anchor	Anchor block	MLF
A	443	NW Anchor	General, anchor block	MLF
A	444	NW Anchor	Nuts, plate	MLF
A	445	NW Anchor	General, anchor block	MLF
А	446	NW Anchor	General, anchor block	MLF
А	447	NW Anchor	Threaded rods	MLF
А	448	NW Anchor	Threaded rods	MLF
А	449	NW Anchor	Underside of plate	MLF
А	450	NE Anchor	General, anchor block	MLF
А	451	NE Anchor	General, anchor block	MLF
А	452	NE Anchor	Cable, nuts, plate	MLF
A	453	NE Anchor	Anchor block, threaded rod, plate	MLF
A	454	South Anchor	Tree growth around cable, anchorage	MLF
A	455	South Anchor	Anchor block is buried in soil, debris	MLF
А	456	South Anchor	Cable, nuts, plate	MLF
А	457	South Anchor	Threaded rod	MLF

1601 Fifth Avenue, Suite 1600 Seattle, WA 98101 (206) 622-5822 fax (206) 622-8130

Project	Riverfront Park Bridges Inspection	Ву	M. Frymoyer	Sheet No.
Location	Spokane	Date	9/26/2014	6 OF8
Client City of Spokane				Job No.
Inspection	114176.12			

Bridge Name:

South Suspension Bridge

Date of Inspection:

Camera No.	Photo No.	Location	Notes	Ву
7	5264	SB3 RT south	General connectiond detail	BK
7	5265	SB4 RT south	General connectiond detail	BK
7	5266	SB4 RT south	General connectiond detail	BK
7	5267	H1 RT	General connectiond detail	BK
7	5268	SB3 RT south	General connectiond detail	BK
7	5269	SB3 RT south	General connectiond detail	BK
7	5270	SB4 RT south	General connectiond detail	BK
7	5271	H1 RT	General connectiond detail	BK
7	5272	H1 RT	General connectiond detail	BK
7	5273	H1 RT	General connectiond detail	BK
7	5274	H1 RT	General connectiond detail	BK
7	5275	H1 LT	General connectiond detail	BK
7	5276	H1 LT	General connectiond detail	BK
7	5277	H1 LT	General connectiond detail	ВК
7	5278	General	General connectiond detail	ВК
7	5279	H1 LT	General connectiond detail	ВК
7	5280	H1 I T south	General connectiond detail	ВК
7	5281	H1 T	General connectiond detail	BK
7	5282	H1 T	General connectiond detail	BK
7	5283	SB4 LT south	General connectiond detail	BK
7	5284	SB3 LT south	General connectiond detail	BK
7	5285	South Tower	Bigging set up to access upper connections	BK
7	5286	SB2 LT south	General connectiond detail	BK
7	5287	SB1 LT south	General connectiond detail	BK
7	5288	SB1 LT south	General connectiond detail	BK
7	5289	SB1 LT south	General connectiond detail	BK
7	5203	SB3 to SB4 LT south		BK
7	5297	SB2 BT south		BK
7	5294	SB1 BT south	General connectiond detail	BK
7	5294	SB1 RT south	General connectiond detail	BK
7	5295	South ULP	North side of south tower pin connection	BK
7	5290	South HUB	North side of south tower pin connection	BK
7	5297	South HUB	North side of south tower pin connection	BK
7	5200	South ULIP	North side of south tower pin connection	PK
/	5299		North side of south tower pin connection	
/	5300	South LUD	North side of south tower pin connection	BK
/	5301	South LUD		BK
-	5302	South HUB		BK
-	5303	South HUB		BK
7	5304	South HUB	Iviain suspension cable connection	BK
7	5306	South HUB	INORTH SIDE OF SOUTH TOWER PIN CONNEction	BK
7	5307	HIGLT	General connectiond detail	BK
/	5308			BK
/	5309	HI3LI		BK
7	5310	SB4 LT north	General connectiond detail	BK
7	5311	General		BK
7	5312	H13 KI	General connectiond detail	BK

1601 Fifth Avenue, Suite 1600 Seattle, WA 98101 (206) 622-5822 fax (206) 622-8130

Project	Riverfront Park Bridges Inspection	Ву	M. Frymoyer	Sheet No.
Location	Spokane	Date	9/26/2014	7 OF8
Client City of Spokane				Job No.
Inspection	114176.12			

Bridge Name:

South Suspension Bridge

Date of Inspection:

Camera No.	Photo No.	Location	Notes	Ву
7	5313	H13 RT	General connectiond detail	BK
7	5314	H13 RT	General connectiond detail	BK
7	5315	SB4 RT north	General connectiond detail	BK
7	5316	General		BK
7	5317	SB1 LT north	General connectiond detail	BK
7	5318	SB1 RT north	General connectiond detail	BK
7	5319	North HUB	Main suspension cable connection	BK
7	5320	North HUB	Main suspension cable connection	BK
7	5321	North HUB	South side of north tower pin connection	BK
7	5322	North HUB	South side of north tower pin connection	BK
7	5323	North HUB	South side of north tower pin connection	BK
7	5324	North HUB	South side of north tower pin connection	BK
7	5325	North HUB	South side of north tower plates	BK
7	5326	North HUB	South side of north tower plates	BK
7	5327	North HUB	South side of north tower plates	BK
7	5328	North HUB	North side of north tower (looking down)	BK
7	5329	North HUB	North side of north tower (looking down)	BK
7	5330	North HUB	North side of north tower (looking down)	BK
7	5331	North HUB	North side of north tower (looking down)	BK
7	5332	North HUB		BK
7	5432	H12 LT	Top hanger to cable connection	PG
7	5433	H12 LT	Top hanger to cable connection	PG
7	5434	H12 LT	Top hanger to cable connection	PG
7	5435	H12 LT	Top hanger to cable connection	PG
7	5436	H12 RT	Top hanger to cable connection	PG
7	5437	H12 RT	Top hanger to cable connection	PG
7	5438	H12 RT	Top hanger to cable connection	PG
7	5439	H11 RT	Top hanger to cable connection	PG
7	5440	H11 RT	Top hanger to cable connection	PG
7	5441	H11 RT	Top hanger to cable connection	PG
7	5442	H11 LT	Top hanger to cable connection	PG
7	5443	H11 LT	Top hanger to cable connection	PG
7	5444	H11 LT	Top hanger to cable connection	PG
7	5445	H3 LT	Top hanger to cable connection	PG
7	5446	H3 LT	Top hanger to cable connection	PG
7	5447	H3 LT	Top hanger to cable connection	PG
7	5448	H3 RT	Top hanger to cable connection	PG
7	5449	H3 RT	Top hanger to cable connection	PG
7	5450	H3 RT	Top hanger to cable connection	PG
7	5451	H2 RT	Top hanger to cable connection	PG
7	5452	H2 RT	Top hanger to cable connection	PG
7	5453	H2 RT	Top hanger to cable connection	PG
7	5454	H2 LT	Top hanger to cable connection	PG
7	5455	H2 LT	Top hanger to cable connection	PG
7	5456	H2 LT	Top hanger to cable connection	PG
7	5457	H2 LT	Top hanger to cable connection	PG

Project Riverfront Park Bridges Inspection		Ву	M. Frymoyer	Sheet No.
Location	Spokane	Date	9/26/2014	8 OF8
Client	City of Spokane			Job No.
Inspection	114176.12			

Bridge Name:

South Suspension Bridge

Date of Inspection:

Kpff Consulting Engineers 1601 Fith Avenue, Suite 1600 Seattle, WA 98101 (206) 622-5822 fax (206) 622-8130

Camera No.	Photo No.	Location	Notes	Ву
7	5458	H4 RT	Top hanger to cable connection	PG
7	5459	H4 RT	Top hanger to cable connection	PG
7	5460	H4 RT	Top hanger to cable connection	PG
7	5461	H4 LT	Top hanger to cable connection	PG
7	5462	H4 LT	Top hanger to cable connection	PG
7	5463	H4 LT	Top hanger to cable connection	PG
7	5466	H10 RT	Top hanger to cable connection	PG
7	5468	H10 RT	Top hanger to cable connection	PG
7	5469	H10 RT	Top hanger to cable connection	PG
7	5470	H10 RT	Top hanger to cable connection	PG
7	5471	H10 LT	Top hanger to cable connection	PG
7	5472	H10 LT	Top hanger to cable connection	PG
7	5473	H10 LT	Top hanger to cable connection	PG
7	5475	H10 LT	Top hanger to cable connection	PG
7	5476	H9 LT	Top hanger to cable connection	PG
7	5477	H9 LT	Top hanger to cable connection	PG
7	5478	H9 LT	Top hanger to cable connection	PG
7	5479	H9 LT	Top hanger to cable connection	PG
7	5480	H9 RT	Top hanger to cable connection	PG
7	5481	H9 RT	Top hanger to cable connection	PG
7	5482	H9 RT	Top hanger to cable connection	PG
7	5483	H8 RT	Top hanger to cable connection	PG
7	5484	H8 RT	Top hanger to cable connection	PG
7	5485	H8 RT	Top hanger to cable connection	PG
7	5486	H8 LT	Top hanger to cable connection	PG
7	5487	H8 LT	Top hanger to cable connection	PG
7	5488	H8 LT	Top hanger to cable connection	PG
7	5489	H7 LT	Top hanger to cable connection	PG
7	5490	H7 LT	Top hanger to cable connection	PG
7	5491	H7 LT	Top hanger to cable connection	PG
7	5492	H7 RT	Top hanger to cable connection	PG
7	5493	H7 RT	Top hanger to cable connection	PG
7	5494	H7 RT	Top hanger to cable connection	PG
7	5495	H6 RT	Top hanger to cable connection	PG
7	5496	H6 RT	Top hanger to cable connection	PG
7	5497	H6 RT	Top hanger to cable connection	PG
7	5498	H6 LT	Top hanger to cable connection	PG
7	5499	H6 LT	Top hanger to cable connection	PG
7	5500	H6 LT	Top hanger to cable connection	PG
7	5501	H5 LT	Top hanger to cable connection	PG
7	5502	H5 LT	Top hanger to cable connection	PG
7	5503	H5 LT	Top hanger to cable connection	PG
7	5504	H5 RT	Top hanger to cable connection	PG
7	5505	H5 RT	Top hanger to cable connection	PG
7	5507	H5 RT	Top hanger to cable connection	PG
South Suspension Bridge - Camera A Photos

IMG_0216.JPG

IMG_0217.JPG

IMG_0218.JPG

IMG_0219.JPG

IMG_0221.JPG

IMG_0226.JPG

IMG_0227.JPG

IMG_0223.JPG

IMG_0228.JPG

IMG_0224.JPG

IMG_0230.JPG

IMG_0229.JPG

South Suspension Bridge - Camera A Photos

IMG_0231.JPG

IMG_0232.JPG

IMG_0233.JPG

IMG_0234.JPG

IMG_0236.JPG

IMG_0237.JPG

IMG_0239.JPG

IMG_0240.JPG

IMG_0241.JPG

IMG_0251.JPG

IMG_0253.JPG

IMG_0254.JPG

IMG_0255.JPG

IMG_0256.JPG

IMG_0257.JPG

IMG_0258.JPG

IMG_0261.JPG

IMG_0298.JPG

IMG_0300.JPG

IMG_0301.JPG

IMG_0303.JPG

IMG_0304.JPG

IMG_0434.JPG

IMG_0305.JPG

IMG_0315.JPG

IMG_0316.JPG

IMG_0432.JPG

IMG_0433.JPG

IMG_0314.JPG

South Suspension Bridge - Camera A Photos

IMG_0436.JPG

IMG_0437.JPG

IMG_0438.JPG

IMG_0439.JPG

South Suspension Bridge - Camera C Photos

IMG_2342.JPG

IMG_2248.JPG

IMG_2249.JPG

IMG_2251.JPG

IMG_2253.JPG

IMG_2254.JPG

IMG_2255.JPG

IMG_2256.JPG

IMG_2257.JPG

IMG_2259.JPG

IMG_2260.JPG

IMG_2322.JPG

IMG_2323.JPG

IMG_2326.JPG

IMG_2327.JPG

IMG_2328.JPG

IMG_2324.JPG

IMG_2329.JPG

IMG_2325.JPG

IMG_2330.JPG

IMG_2331.JPG

IMG_2332.JPG

IMG_2333.JPG

IMG_2334.JPG

IMG_2335.JPG

IMG_2336.JPG

IMG_2338.JPG

IMG_2339.JPG

IMG_2340.JPG

IMG_2341.JPG

South Suspension Bridge - Camera 2 Photos

IMG_0040.JPG

IMG_0007.JPG

IMG_0009.JPG

IMG_0010.JPG

IMG_0011.JPG

IMG_0012.JPG

IMG_0013.JPG

IMG_0019.JPG

IMG_0020.JPG

IMG_0021.JPG

IMG_0022.JPG

IMG_0023.JPG

IMG_0025.JPG

IMG_0026.JPG

IMG_0028.JPG

IMG_0029.JPG

IMG_0037.JPG

IMG_0033.JPG

IMG_0038.JPG

IMG_0039.JPG

IMG_0036.JPG

IMG_5431.JPG

IMG_5170.JPG

IMG_5171.JPG

IMG_5172.JPG

IMG_5173.JPG

IMG_5177.JPG

IMG_5181.JPG

IMG_5174.JPG

IMG_5182.JPG

IMG_5176.JPG

IMG_5185.JPG

IMG_5187.JPG

IMG_5188.JPG

IMG_5197.JPG

1.80 IMG_5199.JPG

IMG_5200.JPG

IMG_5190.JPG

IMG_5205.JPG

IMG_5192.JPG

IMG_5206.JPG

IMG_5207.JPG

IMG_5208.JPG

IMG_5209.JPG

IMG_5214.JPG

IMG_5210.JPG

IMG_5211.JPG

IMG_5212.JPG

IMG_5213.JPG

IMG_5220.JPG

IMG_5217.JPG

IMG_5218.JPG

IMG_5219.JPG

IMG_5247.JPG

IMG_5252.JPG

IMG_5254.JPG

IMG_5263.JPG

IMG_5261.JPG

IMG_5262.JPG

IMG_5256.JPG

IMG_5430.JPG

South Suspension Bridge - Camera A Photos Anchors

IMG_0457.JPG

IMG_0441.JPG

IMG_0442.JPG

IMG_0443.JPG

IMG_0444.JPG

IMG_0445.JPG

IMG_0446.JPG

IMG_0447.JPG

IMG_0448.JPG

IMG_0449.JPG

IMG_0450.JPG

IMG_0451.JPG

IMG_0452.JPG

IMG_0453.JPG

IMG_0454.JPG

IMG_0455.JPG

IMG_0456.JPG

IMG_5507.JPG

IMG_5264.JPG

IMG_5265.JPG

IMG_5266.JPG

IMG_5267.JPG

IMG_5268.JPG

IMG_5269.JPG

IMG_5270.JPG

IMG_5271.JPG

IMG_5272.JPG

IMG_5273.JPG

IMG_5275.JPG

IMG_5277.JPG

IMG_5278.JPG

IMG_5282.JPG

IMG_5283.JPG

IMG_5280.JPG

IMG_5286.JPG

IMG_5288.JPG

IMG_5295.JPG

IMG_5284.JPG

IMG_5289.JPG

IMG_5291.JPG

IMG_5293.JPG

IMG_5294.JPG

IMG_5299.JPG

IMG_5296.JPG

IMG_5297.JPG

1.11

IMG_5298.JPG

IMG_5300.JPG

IMG_5302.JPG

IMG_5303.JPG

IMG_5304.JPG

IMG_5311.JPG

IMG_5307.JPG

IMG_5309.JPG

HH

IMG_5312.JPG

IMG_5313.JPG

IMG_5314.JPG

IMG_5321.JPG

IMG_5317.JPG

IMG_5318.JPG

IMG_5325.JPG

IMG_5326.JPG

IMG_5323.JPG

IMG_5330.JPG

IMG_5434.JPG

IMG_5327.JPG

IMG_5331.JPG

IMG_5332.JPG

IMG_5328.JPG

IMG_5432.JPG

IMG_5329.JPG

IMG_5433.JPG

IMG_5435.JPG

IMG_5436.JPG

IMG_5437.JPG

IMG_5438.JPG

IMG_5439.JPG

IMG_5440.JPG

IMG_5441.JPG

IMG_5442.JPG

IMG_5443.JPG

IMG_5444.JPG

IMG_5445.JPG

IMG_5446.JPG

IMG_5447.JPG

IMG_5448.JPG

IMG_5449.JPG

IMG_5450.JPG

IMG_5451.JPG

IMG_5452.JPG

IMG_5453.JPG

IMG_5455.JPG

IMG_5456.JPG

IMG_5457.JPG

IMG_5458.JPG

IMG_5466.JPG

IMG_5472.JPG

IMG_5460.JPG

IMG_5468.JPG

IMG_5461.JPG

IMG_5469.JPG

IMG_5462.JPG

IMG_5470.JPG

IMG_5463.JPG

IMG_5471.JPG

IMG_5473.JPG

IMG_5475.JPG

IMG_5476.JPG

IMG_5477.JPG

IMG_5478.JPG

IMG_5479.JPG

IMG_5480.JPG

IMG_5481.JPG

IMG_5482.JPG

IMG_5483.JPG

IMG_5484.JPG

IMG_5487.JPG

IMG_5488.JPG

IMG_5489.JPG

IMG_5492.JPG

IMG_5493.JPG

IMG_5494.JPG

IMG_5496.JPG

IMG_5498.JPG

IMG_5503.JPG

IMG_5499.JPG

IMG_5504.JPG

IMG_5495.JPG

IMG_5500.JPG

IMG_5505.JPG

IMG_5501.JPG

IMG_5502.JPG

kpff Consulting Engineers

1601 Fifth Avenue, Suite 1600 Seattle, WA 98101 (206) 622-5822 fax (206) 622-8130

Project Riverfront Park Bridges Inspection By M. Frymoyer Sheet No. Location Spokane Date 9/26/2014 1 OF1 Client City of Spokane Job No. Job No. Inspection Photo Log 114176.12

Bridge Name:

South Suspension Bridge Vaults

Date of Inspection:

9/2/14-9/5/14

Photo No.	Location	Notes	By
264	Vault 1	Severely corroded beam at manhole	MLF
265	Vault 1	Severely corroded beam at manhole	MLF
267	Vault 2	Corroded stay in place formwork near manhole	MLF
268	Vault 2	Corroded stay in place formwork near manhole	MLF
269	Vault 2	Corroded stay in place formwork and support angle at column/tower	MLF
270	Vault 2	Corroded stay in place formwork and support angle at column/tower	MLF
271	Vault 2	Corroded stay in place formwork near bridge abutment	MLF
272	Vault 2	Corroded stay in place formwork near bridge abutment	MLF
273	Vault 2	Corroded stay in place formwork near bridge abutment	MLF
274	Vault 2	Corroded stay in place formwork near bridge abutment	MLF
275	Vault 2	Corroded stay in place formwork near manhole & column/tower	MLF
276	Vault 2	Corroded stay in place formwork and support angle at column/tower	MLF
2265	Vault 1	Severely corroded beam at manhole	BK
2266	Vault 1	Severely corroded beam at manhole	BK
2267	Vault 1	Severely corroded beam at manhole	BK
2268	Vault 1	Severely corroded beam at manhole	BK
2269	Vault 1	Column/Tower lateral support connection	BK
2270	Vault 1	Column/Tower lateral support connection	BK
2271	Vault 1	Column/Tower lateral support connection	BK
2272	Vault 1	Column/Tower lateral support connection	BK
2273	Vault 1	Column/Tower lateral support connection	BK
2274	Vault 1	Column/Tower lateral support connection	BK
2275	Vault 1	Column/Tower lateral support connection	BK
2276	Vault 1	Corroded stay in place formwork near manhole	BK
2277	Vault 1	Corroded stay in place formwork near manhole	BK
2278	Vault 1	Conduits	BK
2279	Vault 1	Conduits	BK
2280	Vault 1	Retaining wall at bottom of vault	BK
2281	Vault 1	Column/Tower anchor plate and bolt	BK
2282	Vault 1	Vault wall in good condition	BK
2283	Vault 1	Retaining wall at bottom of vault	BK
2284	Vault 1	Exposed rebar in vault wall	BK
2285	Vault 1	Vault wall	BK
2286	Vault 1	Upper column brace	BK
2287	Vault 1	Exposed rebar in vault wall	BK
2288	Vault 1	Stay in place formwork and conduits	BK
2289	Vault 1	Lifting anchorage on column/tower	BK
2290	Vault 1	Column/Tower lateral support connection	BK
2291	Vault 1	Column/Tower lateral support connection	BK
2292	Vault 1	Column/Tower lateral support connection	BK
2293	Vault 1	Column/Tower lateral support connection	BK
2294	Vault 1	Corroded stay in place formwork near column/tower	BK
2295	Vault 1	Upper column brace and corroded conduit	BK
2296	Vault 1	Upper column brace and corroded conduit	BK

South Suspension Bridge Vaults - Photos

IMG_2277.JPG

IMG_2283.JPG

IMG_2279.JPG

IMG_2284.JPG

IMG_2280.JPG

IMG_2285.JPG

IMG_2286.JPG

D-23

South Suspension Bridge Vaults - Photos

IMG_2289.JPG

IMG_2290.JPG

IMG_2291.JPG

IMG_2292.JPG

IMG_2294.JPG

IMG_2295.JPG