Hazel's Creek Sub-basin Planning & Schematic Design

PREPARED FOR:	Mr. Bill Peacock, P.E. City of Spokane, Wastewater Management Department
PREPARED BY:	Mark Brower, P.E.
DATE:	April 26, 2012

Background and Purpose

This memorandum serves to report on the planning and schematic design of a regional stormwater management system within the Hazel's Creek (HC) sub-basin. The Hazel's Creek sub-basin is located on the plateau of Spokane's south hill. The project location and sub-basin area is provided on *Attachment A – Figure 1*.

Purpose and Objectives

The purpose of this project is to develop a regional stormwater management system, upstream of the Hazel's Creek Regional Drainage and Conservation Area (HCRDCA) that:

- Takes advantage of downstream infiltration capacity for stormwater disposal at HCRDCA to accept outflow of 1.5 GPM/Acre for developing infill parcels
- Concepts provide alternatives to utilize the existing evaporative ponds on 55th/57th and the KXLY A.M.
 Antenna Site as locations for stormwater facilities
- Allows for multiple site uses for regional stormwater facilities, consistent with Comprehensive Plan, and developer agreements, such as bike/pedestrian trails, viewscapes, etc.
- Sets the stage for economic development by reducing the amount of high value commercial infill land required to serve stormwater purposes via evaporative ponds
- Allows for flexibility to implement in phases as needed to meet demand.

Additional key benefits for implementing a regional stormwater management system within the HC sub-basin include:

- Opportunity to accommodate properties along the 57th Street Corridor, from Palouse Highway to the Spokane County evaporation ponds, west of Regal Street.
- Maximum allowable peak flows of 1.5 PM/Acre for developing parcels helps manage basin-wide infrastructure size requirements and capital costs (detention pond sizes, conveyance sizes).
- Avoids exacerbation of known groundwater issues through use of piped conveyance and lined ponds.
- Opportunity to convert Spokane County evaporation ponds to detention ponds, minimizing the footprint
 of standing water, and thereby improving vector control, safety, etc.
- Creates opportunities to for development of multiple infrastructure improvements, such as:
 - o Bicycle/pedestrian trails for neighborhood connectivity
 - Public spaces such as soccer fields, walking paths, interpretive sites, view corridors, etc. at the KXLY Antenna site
 - o A safe 4-Way intersection at Regal Street and Palouse Highway

Technical Requirements Summary

In 2008, WHPacific, Inc. (under agreement with the City of Spokane and KXLY) conducted a site master plan study for the KXLY antenna site, whereby specific parameters for regional stormwater facilities have been defined. See *Attachment B – "Altamont Stormwater Area Pond Project – Technical Requirements Summary, WHPacific, July 30, 2008."* These parameters were reviewed to ensure they are current, and were subsequently leveraged for development of the schematic concepts defined herein, *with modifications as described below*.

Hydrology and Downstream Disposal

Managed Peak Flow Rates. Since the 2008 WHPacific study was complete, the City of Spokane has undertaken studies of the HCRDCA to ascertain a better understanding of the capacity of the regional stormwater treatment and infiltration facility to handle basin inflows. Once this was understood, the City distributed the capacity over the sub-basin area to determine the maximum peak flow rates that could be accepted at the site from any given site development project. The result was 1.5 gallons/minute/acre (GPM/Acre).

The ability for commercial projects to discharge at this pre-determined rate will allow them to construct detention ponds for stormwater control rather than evaporative ponds, which traditionally occupy 30%-40% of the developed parcel. Stormwater treatment will still be required with the detention ponds, and may be either integrated into the detention ponds, or designed as a standalone treatment process.

Further, this determined rate helps the City manage regional stormwater management infrastructure capital costs, by managing the sizes of conveyance and detention facilities to handle mitigated peak flows, rather than uncontrolled peak flow rates.

For the purpose of this study, parcels that have been identified as likely to develop or redevelop have been analyzed as contributing flows of 1.5 GPM/Acre. Existing street systems and existing contributing sites that are not targeted for redevelopment are assumed to be contributing at full-force peak flow rates.

Contributing Areas. Since the 2008 WHPacific study was complete, the City of Spokane has been working with developers to implement stormwater solutions using the managed peak flow rates and onsite treatment and detention Best Management Practices (BMPs). Developments have primarily been focused east of Regal Street, and north of 57th Avenue. Infrastructure has been designed and developed to direct flows from recent development to existing storm mains in Regal Street, and directly north to the HCRDCA. This infrastructure may serve other developing parcels in this sub-area.

Contributing parcels under consideration for this study are primarily located adjacent to the 57th Ave. corridor or are west of Regal Street, between 57th Ave. and 43rd Ave. Contributing parcels considered are shown in *Attachment A – Figure 2.* Stormwater calculations are provided in *Attachment C.*

Implementation Flexibility. The City of Spokane would like to be as flexible as possible to accommodate marketdriven commercial development opportunities within the sub-basin. As such, the City would like to leverage as much of the existing infrastructure as practicable, including conveyance systems and Spokane County's evaporation ponds. Opportunities to leverage these facilities to quickly respond to stormwater needs must be considered. For example, the County's existing evaporation ponds may be used as a 'pass-through' facility, where 1.5 gpm is released for each acre of commercial property that is developed within the subbasin and connected to the County's 57th Avenue piping system.

Regional Stormwater Facilities

Groundwater at KXLY Antenna Site. Due to seasonal presence of high groundwater on the KXLY Antenna Site the pond bottoms must be covered with an impermeable liner, and constructed above the seasonal high groundwater elevation. Seasonal groundwater may reach as high as 2-feet below ground surface at locations on the site¹.

¹ Geotechnical Engineering Evaluation – Proposed Altamont Stormwater Detention Ponds, GeoEngineers, February 12, 2009

KXLY Site Constraints. Previous studies² and ongoing dialogue with KXLY operations personnel have provided a comprehensive understanding of the physical and operational constraints associated with the KXLY antenna site. Overall, the site is well suited for secondary use as a regional stormwater facility in that it is relatively flat, and is located in the historic natural drainage path. There is shallow rock located in the NE corner of the site, and seasonally fluctuating perched groundwater¹.

Operationally, two significant A.M. radio antenna towers occupy the site and function as an emergency broadcasting facility. The towers are surrounded by security fencing. The two towers have significant foundations, and have bare copper grounding wires that radiate out from the antenna bases 350', approximately 6 to 10 inches below the ground surface. There is a communications and power corridor that extends from the operations/maintenance building to the antennae, and maintenance access to the towers will need to be maintained. KXLY has indicated that the presence of surface water near the antenna bases serves to boost the AM signal. KXLY operations personnel must be directly involved with any proposed project on the site.

Implementation Concepts

Three stormwater management solutions were identified to meet the aforementioned goals and objectives of the project:

- Concept 1: Pumped Bypass to Regal Main
- Concept 2: Gravity Route to Regal Main via KXLY Antenna Site
- Concept 3: Stormwater Facilities at KXLY Antenna Site

The phase solutions are described in detail as follows.

Concept 1: Pumped Bypass to Regal Main

Concept 1 consists of modifying the existing County lined evaporation ponds at 57th and/or 55th Avenues so that additional flows from new commercial development are passed through the ponds. This would be achieved by constructing a discharge outlet, as well as conveyance piping that would tie them to the existing stormwater main in Regal Street. *Attachment A, Figure 3* provides an overview of this concept.

The elevation of the Regal Street stormwater main is higher than the outlet elevation for the ponds. A pump will be necessary to convey the flows to the Regal Street main. The pumped outlet system will allow for flexibility to manage outflow rates for the ponds as desired.

Within Concept 1, there are two alternatives for the location of the discharge outlet and the conveyance route to the Regal Street stormwater main:

- Alternative 1: Outlet to 57th pond only, on 55th Avenue
- Alternative 2: Outlet to 57th and 55th ponds, on 53rd Avenue

Both alternatives are favorable to provide additional stormwater capacity for development needs. Locating the outlet on 53rd Avenue provides the additional benefit of being able to manage the available stormwater capacity across both sites, such that pond sizes and locations may be altered as needed for possible complementary or alternate site uses.

Key Benefits. Implementation of Concept 1 provides the following benefits:

- Relatively low capital cost.
- Allows for rapid response to developer capacity needs on 57th corridor.
- Allows for reconfiguration of 57th/55th pond sites for alternative and/or complementary site uses, such as non-motorized connectivity, or other public uses.
- Potential to drain the ponds after storm events, reducing standing water issues.

FINAL HC TECHNICAL MEMO 042612.DOCX

² Altamont Stormwater Area Project – Pond and Site Use Concepts, WHPacific, Inc., November 26, 2008

• Leverages available capacity in existing facilities, and at the HCRDCA.

Key Technical Issues. The following technical issues will need to be addressed during implementation of Concept 1:

- Capacity of Regal Street stormwater main. This facility was designed with 30% spare capacity. Analyses will be required as new inputs to the system are planned to ensure spare capacity is available.
- Capacity of the 57th Avenue stormwater main. The existing conveyance main in 57th Avenue varies in size from 18" to 30". Previous studies of this conveyance indicate that additional capacity exists. See Attachment D "Capacity Analysis 57th Ave. Stormwater Conveyance System, WHPacific, August, 2007." Analyses will be required as new inputs to the system are planned to ensure spare capacity is available.
- Sizing of stormwater pumping system. Elements of the pumping system, such as the wet well and force main, must be sized to accommodate increasing flows as additional properties are developed in the subbasin. It is likely that the pumps themselves will be replaced and upsized as this development occurs.

Concept 2: Gravity Route to Regal Main via KXLY Antenna Site

Concept 2 consists of converting the existing County lined evaporation ponds at 57th and/or 55th Avenues to detention facilities by providing an gravity outlet and conveyance pipe that would tie the ponds to the existing stormwater main in Regal Street via an easement through the KXLY Commercial Site. *Attachment A, Figure 4* provides an overview of this concept.

With this option, the outlet conveyance from the 55th/57th ponds would be sized to convey, by gravity, the 1.5 GPM/Acre peak flows from the ultimate assumed build-out condition which would include all of the contributing parcels identified in *Attachment A, Figure 2*. The conveyance would direct flows from the ponds to the KXLY Antenna site via Smith Court. The flows may combine with direct stormwater discharge flows from the KXLY Commercial site in an appropriately-sized detention pond.

Key Benefits. Implementation of Concept 2 provides the following benefits:

- Moderate capital cost with managed conveyance flows and infrastructure sizes, potentially offset by significant capacity for development, and associated revenues.
- Allows for meeting developer capacity needs on 57th corridor, 55th/53rd corridors, and the KXLY and Black Commercial sites on Regal Street.
- Allows for potential elimination of 57th pond and reconfiguration of 55th pond site for alternative and/or complimentary site uses, such as non-motorized connectivity, or higher uses.
- Potential to drain the ponds after storm events, reducing standing water issues.
- Leverages capacity in existing facilities, and at the HCRDCA.
- Allows for complementary site uses for KXLY Antenna site, consistent with the City's Comprehensive Plan.
- Allows for potential use of stormwater in a year-round irrigation pond site amenity.
- No need for a stormwater pump station.

Key Technical Issues. The following technical issues will need to be addressed during implementation of Concept 2:

- Capacity of Regal Street stormwater main. This facility was designed with 30% spare capacity. Analyses will be required as new inputs to the system are planned to ensure spare capacity is available.
- Capacity of the 57th Avenue stormwater main. The existing conveyance main in 57th Avenue varies in size from 18" to 30". Previous studies of this conveyance indicate that additional capacity exists. See Attachment D "Capacity Analysis 57th Ave. Stormwater Conveyance System, WHPacific, August, 2007." Analyses will be required as new inputs to the system are planned to ensure spare capacity is available.
- KXLY site constraints. As previously discussed, physical constraints at the KXLY site, such as shallow bedrock and groundwater will need to be considered. Further, operational constraints such as antenna security, electrical and communications pathways, maintenance access needs, and antenna grounding infrastructure will need to be considered.

Concept 3: Stormwater Facilities at KXLY Antenna Site

Concept 3 consists of converting the existing County lined evaporation ponds at 57th and/or 55th Avenue to much smaller detention facilities (or eliminating them entirely), by providing a gravity outlet and conveyance pipe that would extend the piping system in 57th Avenue to new ponds on the KXLY Commercial Site. *Attachment A, Figure 5* provides an overview of this concept.

With this concept, the 55th/57th ponds may be partially or completely replaced with new stormwater detention facilities on the KXLY antenna site. Gravity conveyance would carry flows from 57th through the 55th/57th pond sites, then via Smith Court to the KXLY antenna site. Conveyance would be sized to carry 100-year peak flows from all of the contributing parcels, as described in *Attachment A, Figure 2*. The ponds would be sized to manage 25-year peak flow volumes, and would discharge to the Regal Street stormwater main at a maximum rate of 1.5GPM/Acre of total contributing area.

Key Benefits. Implementation of Concept 3 provides the following benefits:

- High capital costs, potentially offset by significant capacity for development, and associated revenues.
- Opportunity to free up evaporation pond parcels on 55th/57th for higher uses, and associated revenues.
- Allows for meeting developer capacity needs on 57th corridor, 55th/53rd corridors, and the KXLY and Black Commercial sites on Regal Street.
- Leverages capacity in existing facilities, and at the HCRDCA.
- Allows for complementary site uses for KXLY Antenna site, consistent with City's Comprehensive Plan.
- Allows for potential use of stormwater in a year-round irrigation pond site amenity.
- No need for a stormwater pump station.

Key Technical Issues. The following technical issues will need to be addressed during implementation of Concept 3:

- Capacity of Regal Street stormwater main. This facility was designed with 30% spare capacity. Analyses will be required as new inputs to the system are planned to ensure spare capacity is available.
- Capacity of the 57th Avenue stormwater main. The existing conveyance main in 57th Avenue varies in size from 18" to 30". Previous studies of this conveyance indicate that additional capacity exists. See Attachment D "Capacity Analysis 57th Ave. Stormwater Conveyance System, WHPacific, August, 2007." Analyses will be required as new inputs to the system are planned to ensure spare capacity is available.

 KXLY site constraints. As previously discussed, physical constraints at the KXLY site, such as shallow bedrock and groundwater will need to be considered. Further, operational constraints such as antenna security, electrical and communications pathways, maintenance access needs, and antenna grounding infrastructure will need to be considered.

Budget-Level Cost Estimates

Budget-level cost estimates were prepared for each of the Concepts described, and are summarized in Table 1. Cost estimates for each Concept are mutually exclusive, and do not account for accomplishment of work on a previous Concept. Detailed cost estimates are provided in *Attachment E.*

TABLE 1

Budget-Level Cost Estimate Summary

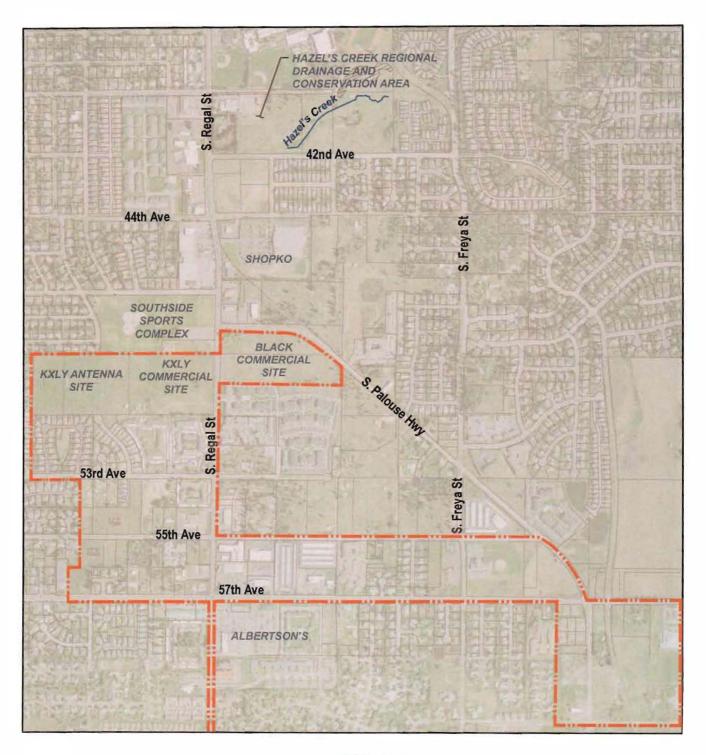
	Concept 1	Concept 2	Concept 3
Construction Cost ^a	\$158,000	\$765,000	\$1,524,000
Design & Construction Management	\$28,000	\$138,000	\$274,000
TOTAL COST BUDGET	\$186,000	\$903,000	\$1,798,000

^a Costs to not include relocation of KXLY/Spokane Radio Infrastructure or implementation of complimentary site uses/amenities, including non-motorized facilities, playfields, irrigation pond, etc.

Stakeholder Coordination & Public Outreach Summary

A public-private stakeholder group was assembled and met regularly throughout this brief planning and schematic design effort. The group consisted of City staff and management from several departments, including Wastewater, Parks, Economic Development, Legal, and Finance. The group also included developer representatives from NAI Black and KXLY. The group developed and refined the project goals and objectives, and collaborated on a number of technical, political, and financial issues surrounding this effort. The group held coordination meetings on the following dates:

- August 24, 2011
- September 28, 2011
- November 2, 2011
- December 7, 2011


In addition, members of the stakeholder group attended a Southgate Neighborhood Association meeting on October 12, 2011. At this meeting, an overview of the proposed storm drainage concept was presented by Doug Busko, CH2M HILL.

Available coordination meeting notes are provided in Attachment F.

ATTACHMENT A

FIGURES

Intentionally Left Blank

LEGEND:

---- Basin Boundary

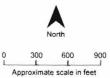
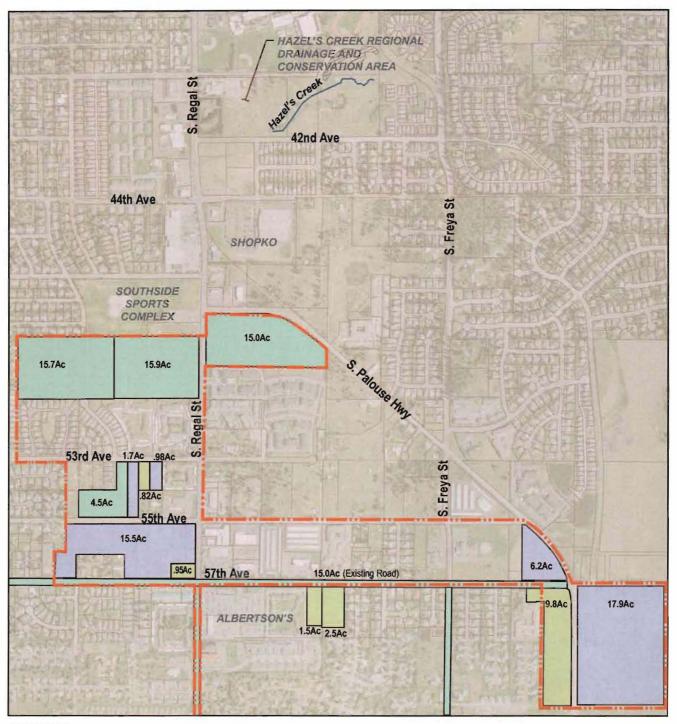



FIGURE 1 Project Vicinity Map City of Spokane

WBG101011024354SPK

CH2MHILL

LEGEND:

Land Type	Peak Flow Assumptions
Redevelop	1.5 GMP/Acre
Undeveloped	1.5 GMP/Acre
To Be Developed	Full Development Flow

CH2MHILL,

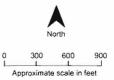
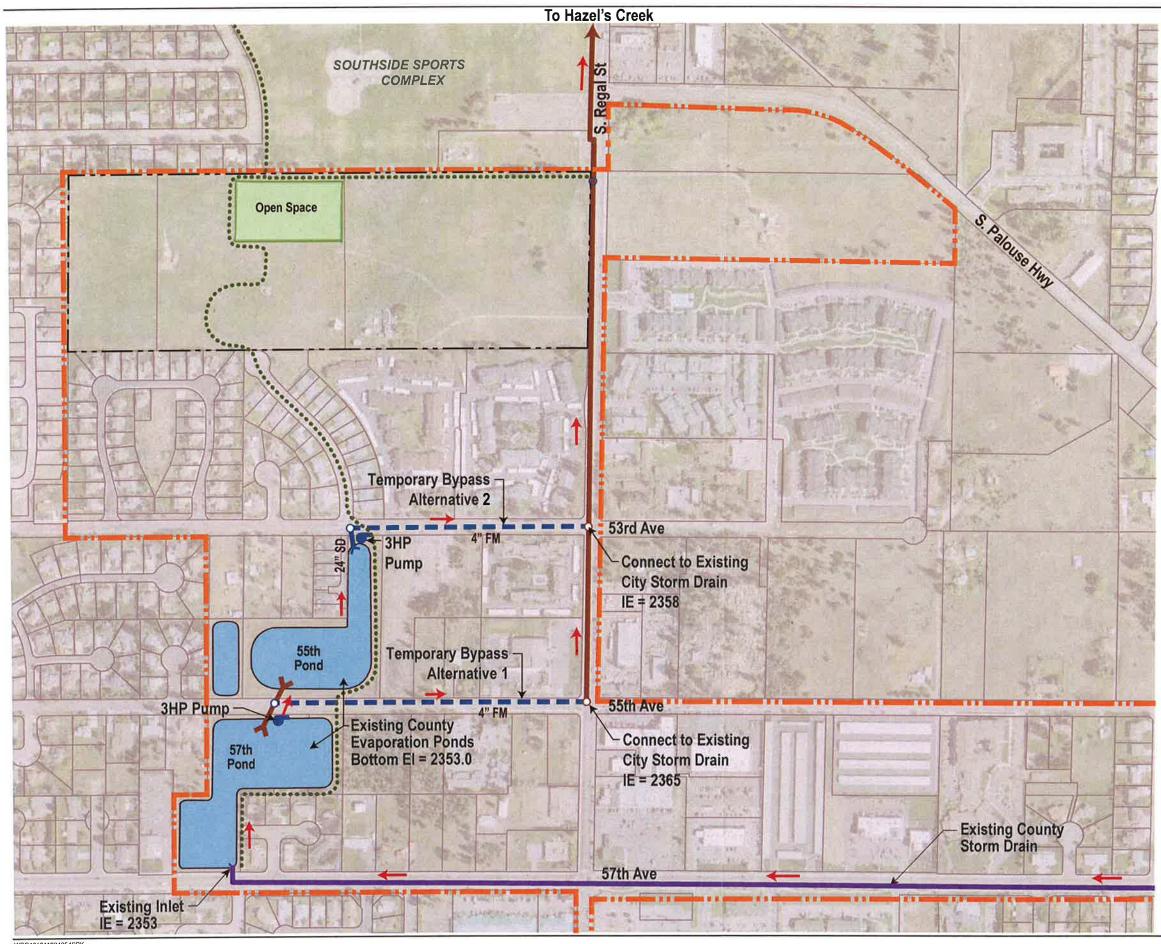
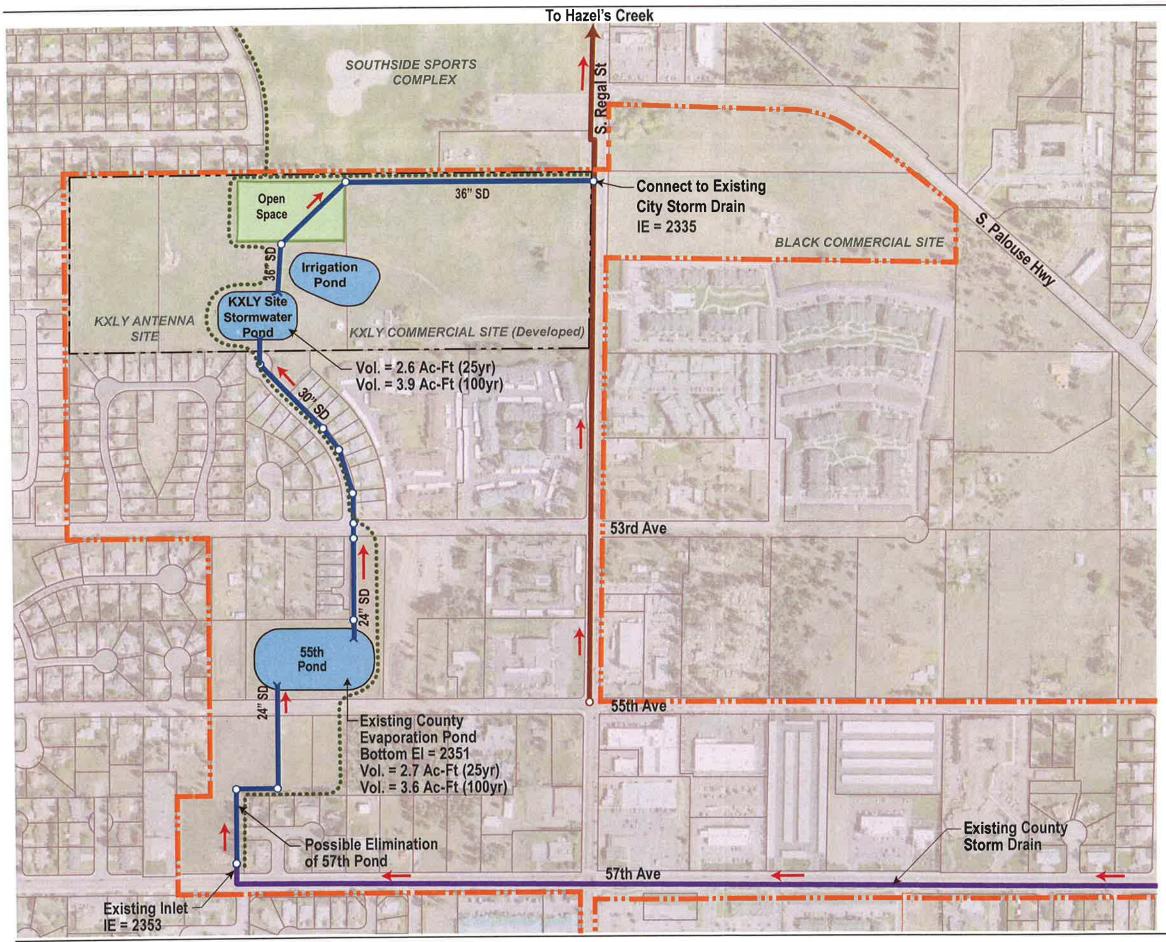



FIGURE 2 Contributing Areas Plan City of Spokane

WBG101011024354SPK

LEGEND:


- Basin Boundary
 - Flow Direction
- •••••• Non-Motorized Connectivity
 - Proposed Storm Drain
- Proposed Storm Drain (Temporary)
 - Existing City Storm Drain
 - Existing County Storm Drain

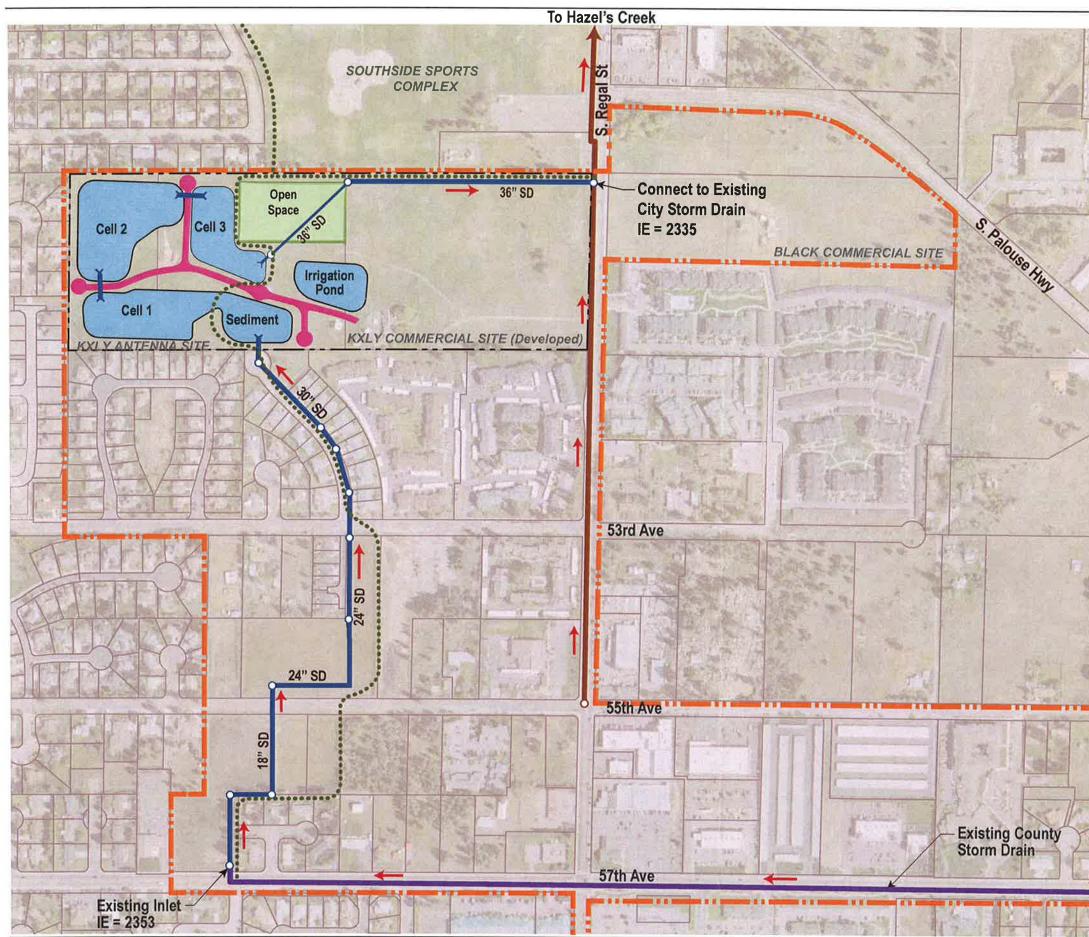
0 100 200 300 400 500 Approximate scale in feet

FIGURE 3 CONCEPT 1 Pumped Bypass to Regal St. Main City of Spokane CH2MHILL

WBG101011024354SPK

LEGEND:

- 🚥 💶 🔤 Basin Boundary
 - Flow Direction
- •••••• Non-Motorized Connectivity
 - Proposed Storm Drain
 - Proposed Storm Drain (Temporary)
 - Existing City Storm Drain
 - Existing County Storm Drain



0 100 200 300 400 500 Approximate scale in feet

FIGURE 4 CONCEPT 2 Gravity Route to Regal St. Main via KXLY Antenna Site *City of Spokane*

CH2MHILL

WBG101011024354SPK

LEGEND:

- Basin Boundary
 - Flow Direction
- ····· Non-Motorized Connectivity
 - Proposed Storm Drain
- Proposed Storm Drain (Temporary)
 - Existing City Storm Drain
 - Existing County Storm Drain
 - Maintenance Access Route/Path

0 100 200 300 400 500 Approximate scale in feet

Pond	Depth(ft)	Bottom Elev	Bottom Area (Ac) 0.9Ac		
Sediment	1.5	2341.00			
Cell 1	1.0'	2341.50	2.8Ac		
Cell 2	1,25'	2341.25	2.4Ac		
Cell 3	1,5	2341.00	1.3Ac		

Total Vol. = 6.6 Ac-Ft (25yr) 10.8 Ac-Ft (100yr)

FIGURE 5 CONCEPT 3 Stormwater Facilities at KXLY Antenna Site City of Spokane

CH2MHILL

ATTACHMENT B

ALTAMONT STORMWATER AREA POND PROJECT - TECHNICAL REQUIREMENTS SUMMARY

.

Intentionally Left Blank

MEMORANDUM

TO: JIM MACINNIS, P.E., MARCIA DAVIS, P.E., CITY OF SPOKANE

FROM: MARK BROWER, P.E.

DATE: JULY 30, 2008

FILE No: 035215

RE: ALTAMONT STORMWATER AREA POND PROJECT - TECHNICAL REQUIREMENTS SUMMARY

BACKGROUND AND PURPOSE

This memorandum serves to report on the technical requirements relating to a regional stormwater facility on Spokane's South Hill.

The purpose of this effort is to review and summarize documented applicable requirements and criteria:

- 1. Revised Code of Washington: RCW 90.03.350;
- 2. Washington Administrative Code: WAC 173-175 Dam Safety;
- 3. Spokane Regional Stormwater Manual;
- 4. Spokane City Code Stormwater Facilities.

RESULTS

The following are a summary of integral items pertaining to stormwater facilities:

RCW 90.03.350: This part of the code specifies that any construction or modification to "controlling works for the storage of ten acre feet or more of water, shall before beginning said construction or modification, submit plans and specifications of the same to the department for examination and approval as to its safety."

WAC 173-175 – Dam Safety: This code specifies conditions under which a project must be considered as a dam. The two applicable provisions are:

- (1) These regulations are applicable to dams which can impound a volume of ten acrefect or more of water as measured at the dam crest elevation. The ten acrefect threshold applies to dams which can impound water on either an intermittent or permanent basis. Only water that can be stored above natural ground level or which could be released by a failure of the dam is considered in assessing the storage volume.
- (2) For a dam whose dam height is six feet or less and which meets the conditions of subsection (1) of this section, the department may elect to exempt the dam from these regulations.

This code section further states all of the guidelines for dams subject to full dam safety codes and regulations.

Spokane City Code - Stormwater Facilities: This document specifies that "the director of wastewater management may recommend that the City assume responsibility for the further design, construction, operation, and/or maintenance of the drainage facilities, or any increment of the responsibility for the facilities, on a specific development property." The site is within the Moran Prairie Special Drainage District as designated by the City of Spokane. This adds special requirements found in sections 17D.060.140, 17F.040.085, 17D.060.150, and 17D.060.160. These sections strictly limit the work that can be done in natural drainage ways. The director of engineering services may grant exemptions or modify conditions based on: existing, accepted engineering principles; and consistent with the policies and purpose of this chapter; and in writing and posted on the department of engineering services website for ten calendar days following issuance of the decision and provided to the office of neighborhood services within two working days of issuance.

Spokane Regional Stormwater Manual: This manual gives guidelines and regulations adopted by Spokane County, the City of Spokane, and City of Spokane Valley relating to stormwater. Chapter 7 describes flow control facilities. The following are key requirements relating to detention facilities:

Design Storm:	NRCS Type 1A 24 hour storm event be used for all flow control facilitie discharge.	
Sizing Requirements:	 Flow Control Facilities (surfa 2-year and 25-year with ap Provide 100-year overflow rot Conveyance Systems: 10-ye systems) 	plicable release rates. ute.
Release Rate:	 Flow Control Facilities: < 2-ye < 25-year pre-developed. 	ar pre-developed,
Dam Safety:	10 Acre-feet above natural grDams that are 6 feet or more	
Setbacks:	 Pond Overflow Structures minimum of 10' from any structures The toe of the berm or together the top of the berm or together top of the berm or together top of the berm or together top of the berm of 5' from any structure Setbacks for any pond shall located up-gradient for 10' gradient from septic tanks or 	be at least 30' when when located down-
Side slopes:	 Pond side slopes shall meerequirements: 1. Interior side slopes shall 3:1 (horizontal to vertical) 2. Interior side slopes mamaximum of 2:1 if the 	I not be steeper than); iy be increased to a
WHPacific	Page 2 of 4	Revised: 7/15/0

Revised: 7/15/08

	 creates a cut or fill with no greater depth than 1.0 foot; 3. Exterior side slopes shall not be steeper than 2:1 unless analyzed for stability by a geotechnical engineer. 4. Pond walls may be vertical retaining walls, provided that: A fence is provided along the top of the wall for walls 2.5 feet or taller and a 4-foot wide access ramp to the pond bottom is provided, with slopes less than 4:1 and the design is stamped by an engineer with structural expertise if the wall is surcharged or if it is 4 feet or more in height. A separate building permit may be required by the local jurisdiction if the wall height exceeds 4 feet.
Emergency Overflow Spilliway:	 Emergency overflow spillways shall be provided for detention ponds with constructed berms of 2 feet or more in height. Spillway requirements located in Spokane Regional Stormwater Manual Section 7.8.5.
Embankments:	 The height of an embankment is measured from the top of the berm to the catch point of the native soil at the lowest elevation. Embankments shall meet the following minimum requirements (SRSM Section 7.8.6): 1. Embankments 4 feet or more in height shall be constructed as recommended by a geotechnical engineer. 2. The berm top width shall be a minimum of 4'. 3. Etc.
Fencing:	 Drainage facilities with the first overflow at 2 or more feet above the pond bottom; Drainage facilities with retaining walls 2.5 feet high or taller. Drainage facilities located at, or adjacent to, schools, nursing homes, daycares, or similar facilities. At the discretion of the local jurisdiction, if a pond is proposed as an amenity (i.e. enhancements to the disposal facility are proposed, such as rocks, boulders, waterfalls, fountains, creative landscaping, or plant materials), the design will be reviewed on a case-by-case basis, such that the fencing may be reduced or waived.
Ponds:	• Pond bottoms shall be located a minimum of 0.5
WHPacific	Page 3 of 4 Revised: 7/15/08

feet below the outlet to provide sediment storage

• In general, all pond bottoms shall be flat.

Regional Stormwater Facilities:

- Regional facilities may reduce a community's long term costs for stormwater management.
- All projects shall be reviewed for the presence of natural drainageways, and a determination will be made as to their significance with regard to preservation of natural conveyance and potential use as part of a regional system.

Special Drainage Areas: Unless specifically approved by the local jurisdiction, the peak rate and volume of stormwater runoff from any proposed land development to any natural or constructed point of discharge downstream shall not exceed the predevelopment peak rate or volume of runoff. A down-gradient analysis demonstrating that there will be no expected adverse impacts on downgradient properties will be required. Exceptions with regard to rate and volume control can be made for regional facilities planned by the local jurisdiction.

ATTACHMENT C

CALCULATIONS

Intentionally Left Blank

Job Name

Job No.
Sheet No.
 Date 3/1/2012
 Computed By Pul2
 Checked By

.

Subject HAZBES CRALK

$$\frac{\operatorname{Rump} \operatorname{sign}_{2}}{\operatorname{Plas} \operatorname{rate}} = 95 \operatorname{Ac} \times 1.5 \operatorname{spm}_{1}^{1} \operatorname{Re}^{14} \operatorname{sgpm}^{1.3}$$

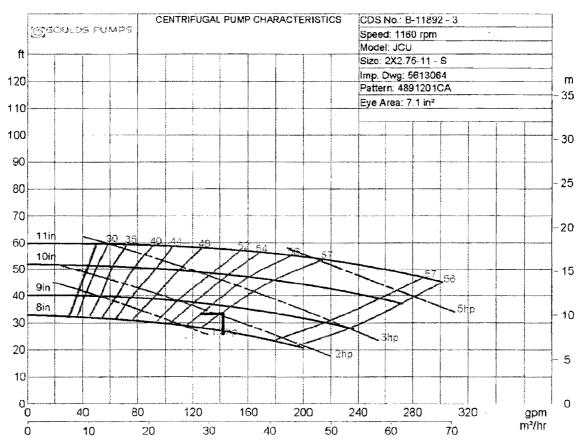
$$M = \frac{10.44 \times 1360 LF}{140} \times \frac{143 \operatorname{gpm}^{1.3}}{140} \operatorname{rate}^{1.3} \times (4^{\circ})^{-4.0615}$$

$$= 12.8^{\circ}$$

$$\mathcal{Q} = 143 \operatorname{gpm}^{10} \operatorname{or}^{10} \operatorname{o.35 e/s}$$

$$\operatorname{Pet}_{1} \operatorname{se}^{1} \operatorname{s}^{11} \operatorname{se}^{11} \operatorname{$$

oh = 17'


Total load loss = 30' + 10% for moup losses a losses of the

.

Model: JCU	Size: 2	X2.75-11 Grou	ıp: S	60Hz	RPM: 1160) Stages: 1
Job/Ing.No. :						
Purchaser : End User:	UNDEFINED	Issued	hv ·			
Item/Equip.No. ; Service ;	ITEM 001		on No. :		C	Date : 03/01/2012
Order No.:					R	Rev.: 0
Operating Con	ditions		Pump Pe	erformance		
Liquid:	Water	Published Efficiency:	57.0 %	Suctio	n Specific Speed:	
Temp.:	70.0 deg F	Rated Pump Efficiency:	57.0 %	Min. H	lydraulic Flow:	35.0 gpm
S.G.Nisc.:	1.000/1.000 cp	Rated Total Power:	2.1 hp	Min. T	hermal Flow:	N/A
Flow:	143.0 gpm	Non-Overloading Power:	2.7 hp			
TDH:	33.0 ft	Imp. Dia. First 1 Stg(s):	8.7500 in			
NPSHa:	0.0 ft	NPSHr:				
Solid size:		Shut off Head:	38.4 ft			
% Susp. Solids (by wtg):		Vapor Press:				

Max. Solids Size: 0.8750 in

Notes: 1. The Mechanical seal increased drag effect on power and efficiency is not included, unless the correction is shown in the appropriate field above. 2. Magnetic drive eddy current and viscous effect on power and efficiency is not included. 3. Elevated temperature effects on performance are not included. 4. Non Overloading power does not reflect v-belt/gear losses.

.

.

.

	ummary								
ID		\sim	21 PHASE 2 - 2	5 Year Analys	is				
Notes		the states	n ala ante ante ante ante ante ante ante ant						
Active Top	ology		Future Active						
Hydrology			Future Hydrol	ogy					
Rainfall Ru	noff		25 year						
Physical		1	Future Physica	le					
Initial Con			Future Initial (
Boundary (Condition]	Future Bounda	ary Condition					
Infiltration	and Inflow	1	Future Infiltra	tion and Inflow					
Output		I	Future Output	3					
User Data	Extensions	l	Future User D	ata Extensions					
PondPack	Engine Calcul	ation Options	Base Calculati	on Options					
Dutput Sur	nmary								
Output Inc	rement		0.050hours	Duration			24.000hours		
Rainfall Su	mmary								
Return Eve	ent Tag		25	Rainfall Ty	'pe	Time	e-Depth		
Total Dept	h		2.0in	Storm Eve	nt		Curve 25 Year		
							Storm		
			Executive	e Summary	(Nodes)				
Label	Scenario	Return Event (years)	Truncation	Hydrograph 1 Volume (ac-ft)	lime to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface	Maximum Pond Storage	
				(ac-it)					
							Elevation	(ac-ft)	
5-1	Future 25	25	None	0.343	8.000	0.87	(ft) (N/A)	(ac-it) (N/A)	
	year						(ft) (N/A)	(N/A)	
5thPond	1		None None	0.343 2.906	8.000 8.150	0.87 6.69	(ft)		
5thPond IN) 5thPond	year Future 25 year Future 25	25					(ft) (N/A)	(N/A))
5thPond IN) 5thPond	year Future 25 year Future 25 year Future 25	25 25	None	2.906	8.150	6.69	(ft) (N/A) (N/A)	(N/A) (N/A)) (Tor the
5thPond IN) 5thPond OUT	year Future 25 year Future 25 year Future 25 year Future 25	25 25 25	None None	2.906 0,226	8.150 24.000	6.69 0.20	(ft) (N/A) (N/A) 2,353.87	(N/A) (N/A) (2.680	TOT VOL
5thPond IN) 5thPond OUT 7-1 957-3 XLY Pond	year Future 25 year Future 25 year Future 25 year Future 25 year Future 25	25 25 25 25	None None None	2.906 0.226 0.551	8.150 24.000 7.950	6.69 0.20 1.67	(ft) (N/A) (N/A) 2,353.87 (N/A)	(N/A) (N/A) (<u>2.680</u> (N/A)	Tor Vol
5thPond IN) 5thPond OUT) 7-1 557-3 XLY Pond 3 (IN) XLY Pond	year Future 25 year Future 25 year Future 25 year Future 25 year Future 25 year Future 25	25 25 25 25 25 25	None None None None	2.906 0.226 0.551 2.240	8.150 24.000 7.950 8.200	6.69 0.20 1.67 5.83	(ft) (N/A) 2,353.87 (N/A) (N/A)	(N/A) (N/A) (<u>2.680</u> (N/A) (N/A)	\sim
55-1 55thPond IN) 55thPond OUT) 77-1 057-3 XLY Pond 3 (IN) XLY Pond 3 (OUT) XLY-1	year Future 25 year Future 25 year Future 25 year Future 25 year Future 25 year Future 25 year Future 25	25 25 25 25 25 25 25	None None None None None	2.906 0.226 0.551 2.240 2.996	8.150 24.000 7.950 8.200 8.000	6.69 0.20 1.67 5.83 8.05	(ft) (N/A) 2,353.87 (N/A) (N/A) (N/A)	(N/A) (N/A) (2.580 (N/A) (N/A) (N/A)	\sim
5thPond IN) 5thPond OUT) 7-1 957-3 XLY Pond 3 (IN) XLY Pond 3 (OUT)	year Future 25 year Future 25 year Future 25 year Future 25 year Future 25 year Future 25 year	25 25 25 25 25 25 25 25	None None None None None	2.906 0.226 0.551 2.240 2.996 0.362	8.150 24.000 7.950 8.200 8.000 24.000	6.69 0.20 1.67 5.83 8.05 0.33	(ft) (N/A) 2,353.87 (N/A) (N/A) (N/A) 2,342.47	(N/A) (N/A) (2.680 (N/A) (N/A) (N/A) (N/A) (2.635	\sim

57thPond_ph2.ppc

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.51] Page 1 of 3

3/1/2012

Label	Scenario	Return Event (years)	Truncation	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
R57-10	Future 25 vear	25	None	0.890	7.950	2.69	(N/A)	(N/A)
R57-11	Future 25 year	25	None	0.101	7.900	0.31	(N/A)	(N/A)
R57-6	Future 25 year	25	None	1.021	8,400	2.23	(N/A)	(N/A)
R57-8	Future 25 year	25	None	0.369	7.900	1.14	(N/A)	(N/A)
R57-9	Future 25 year	25	None	0.508	7.950	1.54	(N/A)	(N/A)
U55-2	Future 25 year	25	None	0.187	7.950	0.57	(N/A)	(N/A)
U55-3	Future 25 year	25	None	0.093	7.900	0.27	(N/A)	(N/A)
U55-4	Future 25 year	25	None	0.104	7.950	0.31	(N/A)	(N/A)
U57-2	Future 25 year	25	None	1.091	7.950	3.30	(N/A)	(N/A)
U57-4	Future 25 year	25	None	0.159	7.950	0.48	(N/A)	(N/A)
U57-5	Future 25 year	25	None	0.737	7.950	2.28	(N/A)	(N/A)
U57-7	Future 25 year	25	None	1.984	8.400	4.13	(N/A)	(N/A)
VOnSiteD (IN)	Future 25 year	25	None	7,793	8.000	18.83	(N/A)	(N/A)
VOnSiteD (OUT)	Future 25 year	25	None	0.323	7.700	0.22	2,600.70	7.470

Executive Summary (Nodes)

Executive Summary (Links)

Label	Туре	Location	Hydrograph Volume (ac-ft)	Peak Time (hours)	Peak Flow (ft³/s)	End Point	Node Flow Direction
55 Outlet	Pond Outlet	Upstream	2.906	8.150	6.69	55thPond	Pond Inflow
55 Outlet	Pond Outlet	Outflow	0.226	24.000	0.20	55thPond	Pond Outflow
55 Outlet	Pond Outlet	Link	0.226	24.000	0.20		
55 Outlet	Pond Outlet	Downstream	2.996	8.000	8.05	KXLY Pond C3	
KXLY Outlet	Pond Outlet	Upstream	2.996	8.000	8.05	KXLY Pond C3	Pond Inflow
KXLY Outlet	Pond Outlet	Outflow	0.362	24.000	0.33	KXLY Pond C3	Pond Outflow
KXLY Outlet	Pond Outlet	Link	0.362	24.000	0.33		
KXLY Outlet	Pond Outlet	Downstream	0.362	24.000	0.33	O-REGAL	

57thPond_ph2.ppc

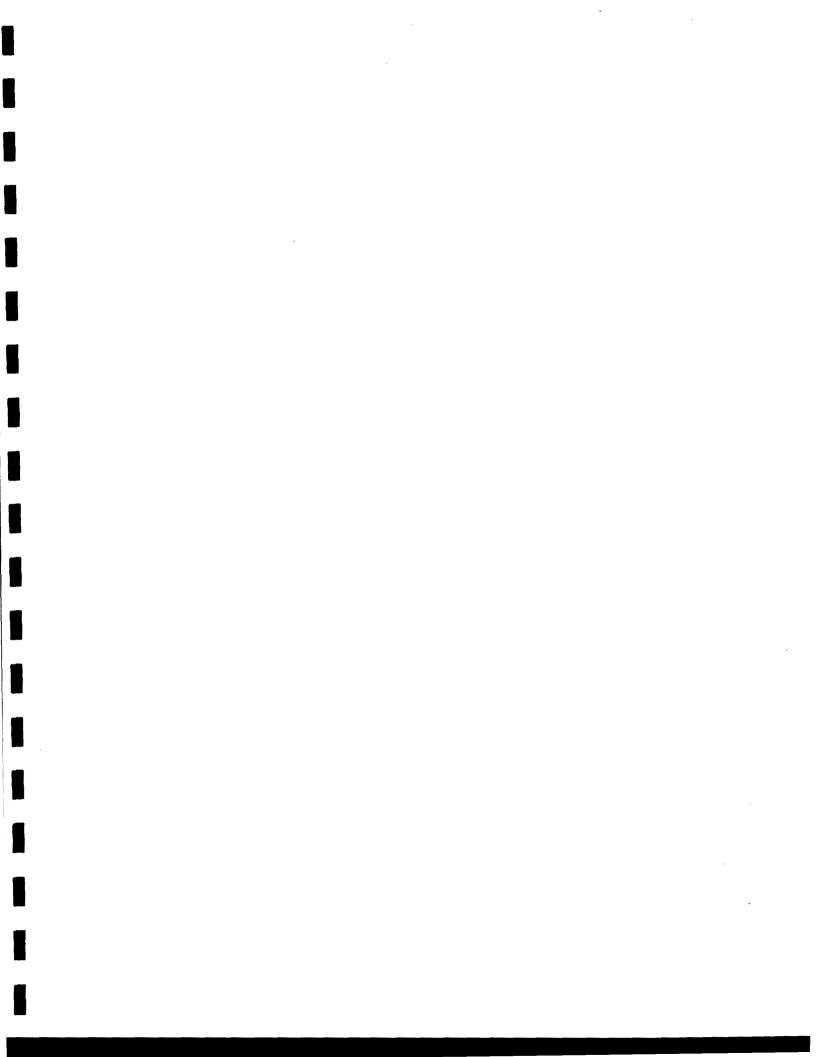
Bentley Systems. Inc. Haestad Methods Solution Canter

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [08.11.01.51] Page 2 of 3

.

3/1/2012


Label	Туре	Location	Hydrograph Volume (ac-ft)	Peak Time (hours)	Peak Flow (ft ³ /s)	End Point	Node Flow Direction
Outlet-12 Outlet-12	Pond Outlet Pond Outlet	Upstream Outflow	7.793	8.000 7.700		VOnSiteD VOnSiteD	Pond Inflow Pond Outflow
Jourier-12		OUTION	0.323	7.700	0.22	VUNSILED	Pond Oddiow
Outlet-12	Pond Outlet	Link	0.323	7.700	0.22		
Outlet-12	Pond Outlet	Downstream	2.906	8.150	6.6 9	55thPond	

Executive Summary (Links)

57thPond_ph2 ppc

3/1/2012

Bentiay Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.51] Page 3 of 3 .

ID			2	an a	and served and serve and			No anno 1871.	
Label			HASE 2-1						
Notes		(
Active Top	ology	F	-uture Active	Topology	an a				
Hydrology			uture Hydrol						
Rainfail Ru	inoff		LOO year						
Physical		F	Future Physica	al					
Initial Con	dition	í	uture Initial (Condition					
Boundary	Condition	ŧ	⁻ uture Bounda	ary Condition					
Infiltration	and Inflow	F	⁻ uture Infiltra	tion and Inflow	ł				
Output			Future Output						
User Data	Extensions	E	Future User D	ata Extensions					
PondPack	Engine Calcula	ation Options (Base Calculati	on Options					
Output Sur	nmary				617) - Hanne - Hanne Karnen Balderia an A				
Output Inc	rement		0.050hours	Duration			24.000hours		
Rainfall Su	mmary								
Return Eve	ent Tag		100	Rainfall T	ype	Tim	e-Depth Curve		
Total Depth			2.6in Storm Event			1			
	**************************************		Executive	e Summary	(Nodes)				
Label	Scenario	Return Event (years)	Truncation	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)	
5-1	Future 100	100	None	0.543	8.000	1.51	(N/A)	(N/A)	
5thPond	year Future 100	100	None	3.875	8.100	9.09	(N/A)	(N/A)	
IN	year Future 100	100	None	0.277	24.000	0.24	2,354.16	3.598	
OUT) 17-1	year Future 100	100	None	0.790	7.950	2.44	(N/A)	(N/A)	
057-3	year Future 100	100	None	2.993	8.200	7.72	(N/A)	· · · · · · · · · · · · · · · · · · ·	TOTAL
CXLY Pond	year Future 100	100	None	4.367	8.000	12.30	(N/A)	(N/A)	7074L
(IN)	year Future 100		None	0.454	24.000	0.40	2,343.05	3.913	
3 (OUT) XLY-1	year Future 100		None	1.675	8.000	4.83	(N/A)		~
	year							(N/A)	
CXLY-2	Future 100 year	100	None	2.415	8.000	7.37	(N/A)	(N/A)	
	Future 100	1 100	None	0.454	24.000	0.40	(N/A)	(N/A)	

57thPond_ph2.ppc

Bentley Systems, Inc. Haestad Methods Solution Center 27 Sigmon Company Drive Suite 200 W

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.51] Page 1 of 3

3/1/2012

Label	Scenario	Return Event (years)	Truncation	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
R57-10	Future 100 vear	100	None	1.276	7.950	3.94		(N/A)
R57-11	Future 100 year	100	None	0.145	7.900	0.45	(N/A)	(N/A)
R57-6	Future 100 year	100	None	1.466	8.400	3.28	(N/A)	(N/A)
R57-8	Future 100 year	100	None	0.492	7.900	1.50	(N/A)	(N/A)
R57-9	Future 100 year	100	None	0.729	7.950	2.25	(N/A)	(N/A)
U55-2	Future 100 year	100	None	0.269	7.950	0.83	(N/A)	(N/A)
U55-3	Future 100 year	100	None	0.131	7.900	0.39	(N/A)	(N/A)
U55-4	Future 100 year	100	None	0.149	7.950	0.46	(N/A)	(N/A)
U57-2	Future 100 year	100	None	1.565	7.950	4.84	(N/A)	(N/A)
U57-4	Future 100 year	100	None	0.228	7.950	0.70	(N/A)	(N/A)
U5 7 -5	Future 100 year	100	None	1.032	7.950	3.22	(N/A)	(N/A)
U57-7	Future 100 year	100	None	2.797	8.400	6.06	(N/A)	(N/A)
VOnSiteD (IN)	Future 100 year	100	None	11.070	8.000	27.38	(N/A)	(N/A)
VOnSiteD (OUT)	Future 100 year	100	None	0.339	6.750	0.22	2,600.98	10.729

Executive Summary (Nodes)

Executive Summary (Links)

Label	Туре	Location	Hydrograph Volume (ac-ft)	Peak Time (hours)	Peak Flow (ft³/s)	End Point	Node Flow Direction
55 Outlet	Pond Outlet	Upstream	3.875	8.100	9.09	55thPond	Pond Inflow
55 Outlet	Pond Outlet	Outflow	0.277	24.000	0,24	55thPond	Pond Outflow
55 Outlet	Pond Outlet	Link	0.277	24.000	0.24		
55 Outlet	Pond Outlet	Downstream	4.367	8.000	12.30	KXLY Pond C3	
KXLY Outlet	Pond Outlet	Upstream	4.367	8.000	12.30	KXLY Pond C3	Pond Inflow
KXLY Outlet	Pond Outlet	Outflow	0.454	24,000	0.40	KXLY Pond C3	Pond Outflow
KXLY Outlet	Pond Outlet	Link	0.454	24.000	0.40		
KXLY Outlet	Pond Outlet	Downstream	0.454	24.000	0.40	O-REGAL	

57thPond_ph2.ppc

.

Bentley Systems, Inc. Haestad Methods Solution Center

3/1/2012

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

.

Bentley PondPack V8i [08.11.01.51] Page 2 of 3

Label	Туре	Location	Hydrograph Volume (ac-ft)	Peak Time (hours)	Peak Flow (ft ³ /s)	End Point	Node Flow Direction
Outlet-12	Pond Outlet	Upstream	11.070	8.000	27.38	VOnSiteD	Pond Inflow
Outlet-12	Pond Outlet	Outflow	0.339	6.750	0.22	VOnSiteD	Pond Outflow
Outlet-12	Pond Outlet	Link	0.339	6.750	0.22		
Outlet-12	Pond Outlet	Downstream	3.875	8.100	9.09	55thPond	

Executive Summary (Links)

57thPond_ph2.ppc

s

3/1/2012

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Bentley PondPack V8i [98.11.01.51] Page 3 of 3

.

ID		<u></u>	21		·				
Label		5	PHASE 3-2	5 Year Analy	sis				
Notes		and the second sec	and the second se)				
Active Top	ology		Future Active	Tepology					
Hydrology			Future Hydrol						
Rainfall Ru			25 year	5.					
Physical			Future Physica	al					
Initial Con	dition		Future Initial						
Boundary			Future Bound						
	and Inflow			tion and Inflow	1				
Output			Future Output						
•	Extensions			ata Extensions					
		ation Options							
Output Su	-		0.0501	N			74 6005		
Output In			0.050hours	Duration			24.000hours		
Rainfall Su	Immary								
Return Ev	ent Tag		25	Rainfall T	уре	Tim	e-Depth Curve		
Total Dept	+h		2.0in	Storm Ev	ant		25 Year		
rotai vepi			2.001	SOUTHEV	enc		Storm		
	out Summary								
	nvergence		0.00ft ³ /s	ICPM Tim			0.050hours		
	Iterations		35	4 0 0111111	ie step		0.00010015		
			Executive	e Summary	(Nodes)				
Label	Scenario	Return Event (years)	Truncation	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)	
55-1	Future 25	25	None	0.343	8.000	0.87	(N/A)	(N/A)	
57-1	year Future 25	25	None	0.551	7.950	1.67	(N/A)	(N/A)	
057-3	year Future 25 year	25	None	2.740	8,200	5.83	(N/A)	(N/A)	
CXLY POND	P	25	None	1.944	9.400	3.83	(N/A)	(N/A) To	77 A
CXLY POND	Future 25	25	None	0.003	10.650	0.15	2,342.48	2.689	
2 (001)	Suture 25	25	None	-0.741	9.150	-2.27	(N/A)	(N/A)	
C2 (OUT) KLY POND C2 (Reverse)	year				1	1		1	

3/1/2012

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 [08.11.01.51] Page 1 of 3

Executive Summary (Nodes)

Label	Scenario	Return Event (years)	Truncation	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation	Maximum Pond Storage (ac-ft)
(KXLY Pond C1 (OUT)	Future 25 vear	25	None	1.944	9.400	3.83	(ft) 2,342.48	2.289
KXLY Popel C3 (IN)	Future 25 Vear	25	None	2.026	7.900	7.50	(N/A)	(N/A)
KXLY Pond C3 (OUT)	Future 25 year	25	None	0.430	24.000	0.37	2,342.49	1.595
KXLV-1	Future 25 Vear	25	None	1.087	8.000	2.94	(N/A)	(N/A)
KXLY-2	Future 25 Vear	25	None	1.683	8.000	5.05	(N/A)	(N/A)
KXLY-3	Future 25 year	25	None	1.586	8.000	4.69	(N/A)	(N/A)
O-REGAL	Future 25 year	25	None	0.430	23.950	0.37	(N/A)	(N/A)
R57-10	Future 25 year	25	None	0.890	7.95 0	2.69	(N/A)	(N/A)
R57-11	Future 25 year	25	None	0,101	7.900	0.31	(N/A)	(N/A)
R57-6	Future 25 vear	25	None	1.021	8.400	2.23	(N/A)	(N/A)
R57-8	Future 25 year	25	None	0.369	7.900	1.14	(N/A)	(N/A)
R57-9	Future 25 year	25	None	0.508	7.950	1.54	(N/A)	(N/A)
U55-2	Future 25 year	25	None	0.187	7.950	0.57	(N/A)	(N/A)
U55-3	Future 25 year	25	None	0.093	7.900	0.27	(N/A)	(N/A)
U55-4	Future 25 year	25	None	0.104	7.950	0.31	(N/A)	(N/A)
U57-2	Future 25 year	25	None	1.091	7.950	3.30	(N/A)	(N/A)
U57-4	Future 25 year	25	None	0.159	7.950	0.48	(N/A)	(N/A)
U57-5	Future 25 year	25	None	0.737	7.950	2.28	(N/A)	(N/A)
U57-7	Future 25 year	25	None	1.984	8.400	4.13	(N/A)	(N/A)
VOnSiteD (IN)	ruture 25 year	25	None	ð.13ö	600.6	19.70	(N/A)	(N/A)
VOnSiteD (OLT)	Future 25 year	25	None	0.410	24.000	0.53	2,600.72	7.724

Executive Summary (Links)

KXLY_Rev5.ppc

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 08795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.51] Page 2 of 3

3/1/2012

Label	Туре	Location	Hydrograph Volume (ac-ft)	Peak Time (hours)	Peak Flow (ft³/s)	End Point	Node Flow Direction
KXLY Outlet	Pond Outlet	Upstream	2.026	7.900	7.50	KXLY Pond C3	Pond Inflow
KXLY Outlet	Pond Outlet	Outflow	0.430	24.000	0.37	KXLY Pond C3	Pond Outflow
KXLY Outlet	Pond Outlet	Link	0.430	23.950	0.37		
KXLY Outlet	Pond Outlet	Downstream	0.430	23.950	0.37	O-REGAL	
Outlet-11	Pond Outlet	Upstream	4.236	8.100	10.44	KXLY Pond C1	Pond Inflow
Outlet-11	Pond Outlet	Outflow	1.944	9.400	3.83	KXLY Pond C1	Pond Outflow
Outlet-11	Pond Outlet	Link	1.941	9.400	3.83		
Outlet-11	Pond Outlet	Downstream	1.944	9.400	3.83	KXLY POND C2	
Outlet-17	Pond Outlet	Upstream	8.136	8.000	19.70	VOnSiteD	Pond Inflow
Outlet-17	Pond Outlet	Outflow	0.410	24.000	0.53	VOnSiteD	Pond Outflow
Outlet-17	Pond Outlet	Link	0.410	24.000	0.53		
Outlet-17	Pond Outlet	Downstream	4.236	8.100	10.44	KXLY Pond C1	
Outlet-C2	Pond Outlet	Upstream	1.944	9.400	3.83	KXLY POND C2	Pond Inflow
Outlet-C2	Pond Outlet	Outflow	0.003	10.650	0.15	KXLY POND C2	Pond Outflow
Outlet C2	Negative Flow	Outflow	-0.741	9.150	-2.27	KXLY POND	Pond Outflow
Outlet-C2	Pond Outlet	Link	0.003	10.650	0.15		
Outlet-C2	Negative Flow	Link	-0.741	9.150	-2.27		
Outlet-C2	Pond Outlet	Downstream	2.026	7.900	7.50	KXLY Pond C3	

Executive Summary (Links)

KXLY_Rev5.ppc

3/1/2012

Bentiev Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.51] Page 3 of 3

Scenario Summary ID 22 Label PHASE 3 - 100 Year Analysis Notes Active Topology Future Active Topology Hydrology Future Hydrology Rainfall Runoff 100 year Physical **Future Physical** Initial Condition **Future Initial Condition Boundary Condition** Future Boundary Condition Infiltration and Inflow Future Infiltration and Inflow Output Future Output User Data Extensions Future User Data Extensions PondPack Engine Calculation Options Base Calculation Options Output Summary **Output Increment** 0.050hours Duration 24.000hours Rainfall Summarv **Return Event Tag** 100 Rainfall Type Time-Depth Curve Total Depth 2.6in 100 Year Storm Event Storm **ICPM Output Summary** Target Convergence 0.00ft3/s **ICPM** Time Step 0.050hours **Maximum Iterations** 35 Executive Summary (Nodes) Label Scenario Return Event Truncation Hydrograph Time to Peak Peak Flow Maximum Maximum Volume (ft³/s) Water (years) (hours) Pond (ac-ft) Surface Storage Elevation (ac-ft) (ft) Future 100 100 None 0.543 8.000 1.51 (N/A)(N/A)year 57-1 Future 100 100 None 0.790 7.950 2.44 (N/A) (N/A) year

Scenario Calculation Summary

55-1 Future 100 D57-3 100 None 2.993 8.200 7.72 (N/A) (N/A)year (N/A) TOTAL VOL KXLY POND Future 100 100 None 9.150 3.151 5.86 (N/A)C2 (IN) lvear 100 None = 10.8 ruf KXLY POND Future 100 0.032 23.750 0.59 4.279 2,343.15 C2 (OUT) year KXLY POND Future 100 100 None -1.159 8.550 -5.05 (N/A)(N/A)C2 vear (Reverse) KXLY Pond Future 100 100 None 7,223 8.050 14.39 (N/A)(N/A)C1 (IN) lvear

KXLY Rev5.ppc

Bentley Systems, Inc. Haestad Methods Solution Center 27 Slemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.51] Page 1 of 3

3/1/2012

Scenario Calculation Summary

Executive Summary (Nodes)

Label	Scenario	Return Event Truncation (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
KXLY Pond C1 (OUT)	Future 100 year	100None	3.151	9.150	5.86	2,343.17	4.061
KXLY Pond C3 (IN)	Future 100 vear	100 None	2.957	7.900	9,97	(N/A)	(N/A)
KXLY Pond C3 (Reverse)	Future 100 year	100 None	0.000	8.850	-0.01	(N/A)	(N/A)
KXLY Pond C3 (OUT)	Future 100 year	100 None	0.524	24.000	0.46	2,343.15	2.433
KXLY-1	Future 100 year	100 None	1.675	8.000	4.83	(N/A)	(N/A)
KXLY-2	Future 100 year	100 None	2.415	8.000	7.37	(N/A)	(N/A)
KXLY-3	Future 100 vear	100 None	2.275	8.000	6.88	(N/A)	(N/A)
O-REGAL	Future 100 vear	100 None	0.524	23.950	0.46	(N/A)	(N/A)
R57-10	Future 100 year	100 None	1.276	7.950	3.94	(N/A)	(N/A)
R57-11	Future 100 year	100 None	0.145	7.900	0.45	(N/A)	(N/A)
R57- 6	Future 100 year	100 None	1.466	8.400	3.28	(N/A)	(N/A)
R57-8	Future 100 year	100 None	0.492	7.900	1.50	(N/A)	(N/A)
R57-9	Future 100 year	100 None	0.729	7.950	2.25	(N/A)	(N/A)
U55-2	Future 100 year	100 None	0.269	7.950	0.83	(N/A)	(N/A)
U55-3	Future 100 year	100 None	0.131	7.900	0.39	(N/A)	(N/A)
U55-4	Future 100 year	100 None	0.149	7.950	0.46	(N/A)	(N/A)
U57-2	Future 100 year	100 None	1.565	7.950	4.84	(N/A)	(N/A)
U57-4	Future 100 year	100 None	0.228	7.950	0.70	(N/A)	(N/A)
U57-5	Future 100 yeai	100 None	1.032	7.950	3.22	(N/A)	(N/A)
U57-7	Future 100 year	100 None	2.797	8.400	6.06	(N/A)	(N/A)
VOnSiteD (IN)	Future 100 year	100 None	11.613	8.000	28.89	(N/A)	(N/A)
VOnSiteD (OUT)	Future 100 year	100 None	1.955	24.000	3.39	2,600.89	9.657

KXLY_Rev5.ppc

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W

27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i (08.11.01.51) Page 2 of 3

3/1/2012

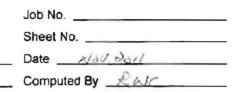
Scenario Calculation Summary

Label	Туре	Location	Hydrograph Volume (ac-ft)	Peak Time (hours)	Peak Flow (ft³/s)	End Point	Node Flow Direction
KXLY Outlet	Pond Outlet	Upstream	2.957	7.900	9.97	KXLY Pond C3	Pond Inflow
KXLY Outlet	Negative Flow	Upstream	0.000	8.850	-0.01	KXLY Pond C3	Pond Inflow
KXLY Outlet	Pond Outlet	Outflow	0.524	24.000	0.46	KXLY Pond C3	Pond Outflow
KXLY Outlet	Pond Outlet	Link	0.524	23.950	0.46		
KXLY Outlet	Pond Outlet	Downstream	0.524	23.950	0.46	O-REGAL	
Outlet-11	Pond Outlet	Upstream	7.223	8.050	14.39	KXLY Pond C1	Pond Inflow
Outlet-11	Pond Outlet	Outflow	3.151	9.150	5.86	KXLY Pond C1	Pond Outflow
Outlet-11	Pond Outlet	Link	3.139	9.150	5.86		
Outlet-11	Pond Outlet	Downstream	3.151	9.150	5.86	KXLY POND C2	
Outlet-17	Pond Outlet	Upstream	11.613	8.000	28.89	VOnSiteD	Pond Inflow
Outlet-17	Pond Outlet	Outflow	1.955	24.000	3.39	VOnSiteD	Pond Outflow
Outlet-17	Pond Outlet	Link	1.955	24.000	3.39		
Outlet-17	Pond Outlet	Downstream	7.223	8.050	14.39	KXLY Pond C1	
Outlet-C2	Pond Outlet	Upstream	3.151	9.150	5.86	KXLY POND C2	Pond Inflow
Outlet-C2	Pond Outlet	Outflow	0.032	23.750	0.59	KXLY POND	Pond Outflow
Outlet-C2	Negative Flow	Outflow	-1.159	8.550	-5.05	KXLY POND	Pond Outflow
Outlet-C2	Pond Outlet	Link	0.032	23.750	0.59		
Outlet-C2	Negative Flow	Link	-1.161	8.550	-5.05		
Outlet-C2	Pond Outlet	Downstream	2.957	7.900	9.97	KXLY Pond C3	
Outlet-C2	Negative Flow	Downstream	0.000	8.850	0.01	KXLY Pond C3	

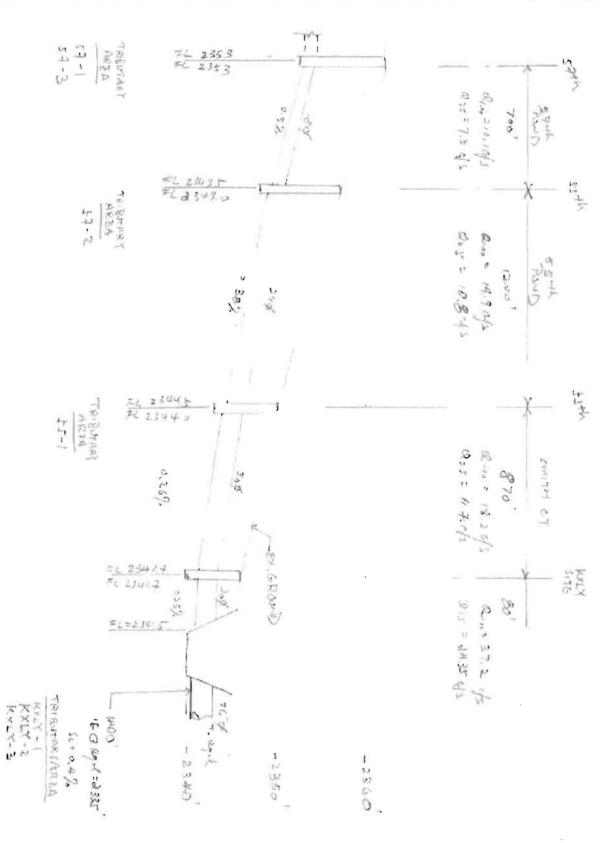
Executive Summary (Links)

KXLY_Rev5.ppc

3/1/2012


l

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11,01,51] Page 3 of 3


+PAZZL'S

CREEK

Job Name Subject _

Checked By

Worksheet for Circular Pipe - 18"

Project Description

• •			
Friction Method	Manning Formula		
Solve For	Full Flow Capacity		
Input Data			
Roughness Coefficient		0.012	
Channel Slope		0.05000	ft/ft
Normal Depth		1.50	ft
Diameter		1.50	ft
Discharge		25.44	ft³/s
Results			
Discharge		25,44	ft?/s
Normal Depth		1.50	ft
Flow Area		1.77	
Wetted Perimeter		4.71	ft
Hydraulic Radius		0.38	ft
Top Width		0.00	ft
Critical Depth		1.49	ft
Percent Full		100.0	%
Critical Slope		0.04634	ft/ft
Velocity		14.40	ft∕s
Velocity Head		3.22	ft
Specific Energy		4.72	ft
Froude Number		0.00	
Maximum Discharge		27.37	ft³/s
Discharge Full		25.44	ft³/s
Slope Full		0.05000	ft/ft
Flow Type	SubCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%

3/1/2012 1:22:10 PM

Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster (08.11.00.03) 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for Circular Pipe - 18"

GVF Output Data

Normal Depth Over Rise	100.00	%
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	1,50	ft
Critical Depth	1.49	ft
Channel Slope	0.05000	ft/ft
Crítical Slope	0.04634	ft/ft

3/1/2012 1:22:10 PM

Worksheet for Circular Pipe - 24"

Project Description			
Friction Method	Manning Formula		
Solve For	Full Flow Capacity		
Input Data			
Roughness Coefficient		0.012	
Channel Slope		0.00380	ft/ft
Normal Depth		2.00	ft
Diameter		2.00	ft
Discharge		15.11	ft³/s
Results			
Discharge		15.11	ft³/s
Normal Depth		2.00	ft
Flow Area		3.14	ft²
Wetted Perimeter		6.28	ft
Hydraulic Rodius		0.50	ft
Top Width		0.00	ft
Critical Depth		1.40	ft
Percent Full		100.0	%
Critical Slope		0.00541	ft/ft
Velocity		4.81	ft/s
Velocity Head		0.36	ft
Specific Energy		2.36	ft
Froude Number		0.00	
Maximum Discharge		16.25	ft³/s
Discharge Full		15.11	ft³/s
Slope Full		0.00380	ft/ft
Flow Type	SubCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
		a aa ~~	

3/1/2012 1:22:49 PM

Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.11.00.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Page 1 of 2

Worksheet for Circular Pipe - 24"

GVF Output Data		
Normal Depth Over Rise	100.00	%
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	2.00	ft
Critical Depth	1.40	Ħ
Channel Slope	0.00380	ft/ft
Critical Slope	0.00541	ft/ft

3/1/2012 1:22:49 PM

Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster (08.11.00.03) 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2

Worksheet for Circular Pipe - 30"

Project Description

Friction Method	Manning Formula		
Solve For	Full Flow Capacity		
Input Data			
Roughness Coefficient		0.012	
Channel Slope		0.00260	ft/ft
Normal Depth		2.50	ft
Diameter		2.50	ft
Discharge		22.66	ft³/s
Results			
Discharge		22.66	ft³/s
Normal Depth		2.50	ft
Flow Area		4.91	
Wetted Perimeter		7.85	ft
Hydraulic Radius		0.63	ft
Top Width		0.00	ft
Critical Depth		1.62	Ħ
Percent Full		100.0	%
Critical Slope		0.00459	ft/ft
Velocity		4.62	ft/s
Velocity Head		0.33	ft
Specific Energy		2.83	ft
Froude Number		0.00	
Maximum Discharge		24.37	ft³/s
Discharge Full		22.66	ft³/s
Slope Full		0.00260	ft/ft
Flow Type	SubCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%

3/1/2012 1:23:16 PM

 Bentley Systems, Inc.
 Haestad Methods Solution Center
 Bentley FlowMaster [08.11.00.03]

 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666
 Page 1 of 2

Worksheet for Circular Pipe - 30"

GVF Output Data

Normal Depth Over Rise	100.00	%
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	2.50	ft
Critical Depth	1.62	ft
Channel Slope	0.00260	ft/ft
Critical Slope	0.00459	ft/ft

3/1/2012 1:23:16 PM

Worksheet for Circular Pipe - 36"

Project Description

Friction Method Solve For	Manning Formula Full Flow Capacity		
Input Data			
-		0.042	
Roughness Coefficient		0.012 0.00400	0.0
Channel Slope			
Normal Depth		3.00 3.00	ft
Diameter		45.70	ft #1/-
Discharge		45,70	n*/s
Results			
Discharge		45.70	ft³/s
Normal Depth		3.00	ft
Flow Area		7.07	ft²
Wetted Perimeter		9.42	ft
Hydraulic Radius		0.75	ft
Top Width		0.00	ft
Critical Depth		2.20	ft
Percent Full		100.0	%
Critical Slope		0.00506	ft/ft
Velocity		6.46	ft/s
Velocity Head		0.65	ft
Specific Energy		3.65	ft
Froude Number		0.00	
Maximum Discharge		49.16	ft³/s
Discharge Full		45.70	ft³/s
Slope Full		0.00400	ft/ft
Flow Type	SubCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%

3/1/2012 1:23:44 PM

Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster [08.11.00.03] 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 1 of 2

Worksheet for Circular Pipe - 36"

GVF Output Data

Normal Depth Over Rise	100.00	%
Downstream Velocity	Infinity	ft/s
Upstream Velocity	Infinity	ft/s
Normal Depth	3.00	ft
Critical Depth	2.20	ft
Channel Slope	0.00400	ft/ft
Critical Slope	0.00506	ft/ft
•		

3/1/2012 1:23:44 PM

Bentley Systems, Inc. Haestad Methods Solution Center Bentley FlowMaster (08.11.00.03) 27 Siemons Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Page 2 of 2

,

ATTACHMENT D

CAPACITY ANALYSIS - 57TH AVE. STORMWATER CONVEYANCE SYSTEM

Intentionally Left Blank

.

CAPACITY ANALYSIS

57th Ave. Stormwater Conveyance System

From Corner of Palouse Highway and 57th Avenue to

250' West of Cook Street

A Part of the Glenrose Basin, Spokane County, WA

DRAFT August, 2007

Prepared for:

Black Development Spokane County, Public Works & Utilities

Prepared by:

W&H Pacific, Inc. 12409 East Mirabeau Parkway, Suite 300 Spokane, Washington 99216

TABLE OF CONTENTS

Page

1.0 – PROJECT SUMMARY	1
1.1 – Limits of Analysis	1
1.2 – Project Background and Purpose	2
1.3 – Agency Requirements	2
2.0 - METHODOLOGY	2
2.1 – Hydrologic Analysis of Currently Contributing Areas	2
2.2 – Hydraulic Analysis of 57 th Ave. Conveyance System	3
3.0 – RESULTS	4

LIST OF FIGURES

Figure 1:	Vicinity Map
Figure 2:	Existing Conditions Plan
Figure 3:	Schematic Model with Hydrological Inputs

APPENDICES

- Appendix A: Descriptions of Existing Contributing Areas
- Appendix B: Existing Conditions Analysis Input Parameters Summary
- Appendix C: Hydrologic Calculations Summary
- Appendix D: Hydraulic Calculations Summary

1.0 PROJECT SUMMARY

1.1 Limits of Analysis

This report summarizes the analysis of an existing stormwater conveyance system installed as part of Spokane County ("the County") Road Project No. 2694 which was completed in 1998. The system is located within the Glenrose Basin which is a watershed that covers approximately 9 square miles located in Spokane County on Spokane's South Hill (see Figure 1 – Vicinity Map). The limits of the study are from the beginning of the piped conveyance system on the corner of Palouse Highway and 57th Ave., to the system outfall located at the County surface water evaporation ponds located on 57th Ave., approximately 250' west of Cook St.

1.2 Project Background and Purpose

Over the years, the County has relied on mandated private, self-contained surface water facilities as the primary means of managing surface water runoff for residential and commercial developments. As a result, this portion of Spokane County has been largely developed without regional stormwater infrastructure. Early on, this was not an issue because the development in the area was limited and confined to areas of open space with relatively flat slopes. However, development has continued and has spread to areas with steeper slopes. Natural drainage conveyance channels have been altered and surface water runoff volumes and flow rates have increased due to the increase of impervious area. Due to these changes, common problems within the study area include erosion, sedimentation, and both surface and groundwater flooding.

To address increasing problems in the area, the County implemented the Final Glenrose Stormwater Management Plan in December of 2002 and a 6-year Stormwater Capital Improvement Plan in November 2006. According to the Stormwater CIP, regional and comprehensive surface water management systems are now planned for the Glenrose Basin.

The County identified the 57th Ave. conveyance system as a potential regional facility within the Glenrose Basin. The purpose of this study is to analyze the existing conveyance system, including all of the current contributing surface water drainage areas, and identify if there is sufficient capacity to serve additional drainage areas for regional purposes.

The County is also actively seeking an outlet and ultimate disposal facility such that the existing evaporation ponds on 57th may be converted to detention facilities, and additional capacity may be realized for regional purposes. It should be noted that this study does not attempt to address the capacity of the existing County disposal ponds on 57th Ave.

This study has been funded by Black Development in an effort to encourage regional stormwater conveyance systems within the Glenrose Basin that will:

- Directly benefit future commercial infill development by greatly reducing the amount of developable area historically required for on-site surface water control facilities;
- Directly benefit the County and citizens by addressing problematic stormwater issues within the area, allowing for more tax revenue-generating developable areas, and potentially providing for the reconfiguration of the 57th Ave. evaporation ponds to a more suitable and integrated public amenity.

1.3 Agency Requirements

Spokane County, City of Spokane and City of Spokane Valley have developed the Spokane Regional Stormwater Manual (SRSM) to provide clear stormwater management requirements and best management practices for the region. The SRSM requires that new storm drain conveyance systems be designed with sufficient capacity to convey the peak flow rate for the level of service required for the surface water control/disposal facility. If the SCS Method was used to design the surface water control/disposal facility, the same method and design storm may be used to design the storm conveyance system.

For the purposes of this study, the hydrologic inputs to the surface water conveyance system were analyzed by modeling a 2, 10, 25, 50 and 100-year return period storm events, considering the Regional Storm (Region 3), and reviewing the Short-duration storm (resembles area thunderstorms) in accordance with the Stormwater Management Manual for Eastern Washington (SMMEW), as published by the Washington State Department of Ecology (DOE).

It is our understanding that the 57th conveyance system was originally designed with 50-year storm peak flows, which may be consistent with the intent for this to be a County regional conveyance facility. For practical purposes, both the 50-year and 10-year peak flows have been modeled hydraulically and are reported herein.

2.0 METHODOLOGY

In order to ascertain the capacity of the 57th Ave. conveyance system, the following steps were accomplished:

- Step 1: Hydrologic analysis of current contributing areas
- Step 2: Hydraulic analysis of 57th Ave. conveyance system w/inputs from existing contributing areas
- Step 3: Hydraulic analysis of 57th Ave. conveyance system for full flow capacity (as constructed)
- Step 4: Comparison of Steps 2 and 3 to determine additional capacity of system for potential future addition of flows.

2.1 Hydrologic Analysis of Current Contributing Areas

An overall view of the sub-basin study area is provided in Figure 2 - Existing Conditions Sub Basin Plan. Generally, the grades are from the southeast to the northwest with grades ranging from 0.5% to 4%.

Currently contributing areas were identified by an initial screening of area contours, and were validated by subsequent detailed records research, field reconnaissance, and discussions with County staff. The currently contributing areas are indicated by the rose-colored shading on Figure 2, and have been assigned a unique 'basin' identifier. The contributing areas are a mix of agriculture, commercial, public, single family residences and multifamily residences. Detailed descriptions of each of the contributing areas are provided in Appendix A. While most of the contributing areas are currently fully developed, it is assumed that future peak flows from the site will not exceed the current flows from the site.

Each contributing area was assigned a hydrologic soil group classification based on the current Spokane County NRCS map. The type of land cover ranges from agricultural crops to impervious

asphalt pavement with woods, grassland and herbaceous mixtures in between. Group B soils are highly prevalent in the area however there are some Group A and C soils as well.

Curve Numbers (CN) were assigned to each area, based on the level of development and resulting runoff-producing impervious surface. In some instances, a weighted curve number was developed for sites with mixed use in accordance with the SRSM.

Time of concentration (T_c) was generated for each site according to how flow moves through. Flow paths are indicated on Figure 2.

A summary of all of the hydrologic input parameters used to calculate stormwater runoff flows for each contributing basin is provided in Appendix B. Hydraflow "Hydrographs", by Intellisolve was used with a Santa Barbara Urban Hydrograph (SBUH) for the runoff calculations. Precipitation values for the different storm recurrence intervals were derived from the Isopluvial Maps provided in the SRSM.

The detailed "Hydrographs" summary report is provided in Appendix C. The peak flows are summarized in Table 1 below.

Basin ID	Peak Flow (cfs) 10-yr, Regional Storm	Peak Flow (cfs) 50-yr, Regional Storm
A-1	1.22	1.90
A-2	0.39	0.51
B-1	0.05	0.11
B-2	0.13	0.29
B-3	0.09	0.20
С	0.08	0.17
D	0.10	0.23
E	0.08	0.17
F-1	0.17	0.37
F-2	0.65	0.83
F-3	0.42	0.94
F-4	0.58	1.28
F-5	0.60	1.02
*O-1 to O-19	See Appendix C	See Appendix C

Table 1 – Summary of Surface Water Runoff from Current Contributing Areas:

*"O"-Basins represent 57th Ave. roadway drainage into the system.

2.2 Hydraulic Analysis of 57th Ave Conveyance System

57th Ave. is a typical crowned roadway section that sheets runoff away from the centerline. The runoff is then routed along the curb where it is collected by catch basins connected to the storm drainage collection system. The collection system consists of catch basins on the north side of 57th which convey flow through 10" PVC laterals to catch basins on the south side of 57th which are interconnected by the main conveyance pipe. The catch basins are typically paired and spaced an average of 300 feet apart. The main conveyance pipe runs east to west and starts as an 18" diameter corrugated polyethylene (CPEP) pipe and increases in size to a maximum of 30" where it outlets to the evaporation ponds.

A schematic model of the conveyance system with the hydrologic inputs is provided in Figure 3. Hydraflow "Storm Sewers", by Intellisolve was used to model the as-constructed conveyance system with input flows. Manning's equation was used to analyze the as-constructed conveyance system for theoretical "full-flow" capacity. The hydraulic analysis is summarized in Appendix D.

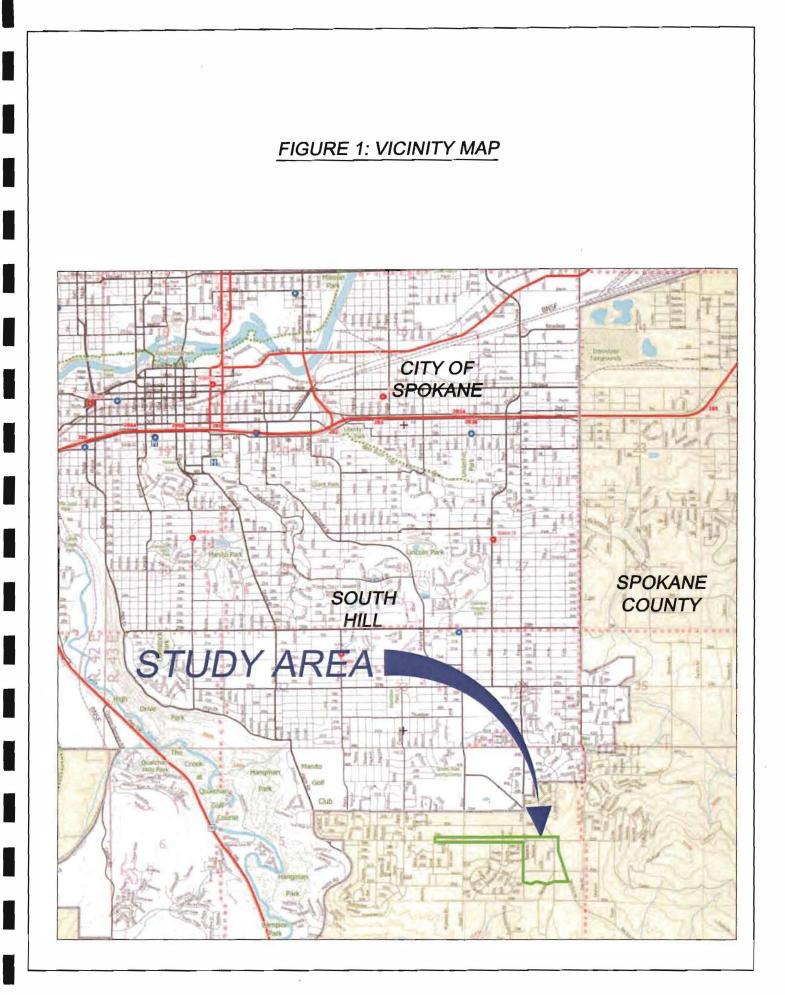
3.0 RESULTS

A comparison of the full-flow hydraulic capacity (cfs) to the peak flow rates in the conveyance system, as generated from the 50-year Regional Storm design flow (see highlighted columns in Appendix D), indicates that the system is currently at approximately 67% of its total capacity. If the 10-year Regional Storm is evaluated, the system is currently at approximately 40% of its total capacity.

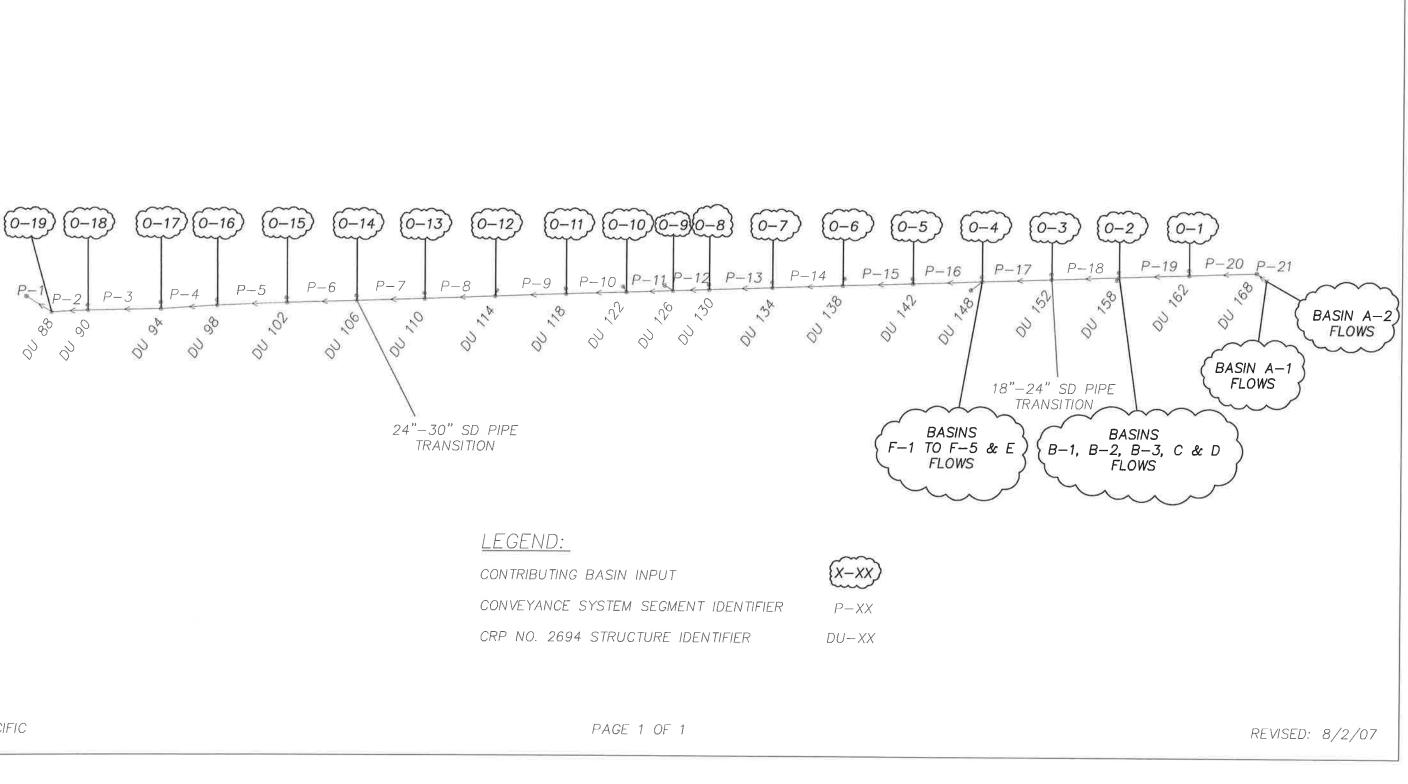
The conveyance system, as designed, appears to have a 20cfs full-flow capacity throughout much of the system. However, the as-constructed system is bottlenecked from pipe segments P-10 to P-13 and P-15 to P-16, due to the slope at which these facilities were constructed. If there are feasible means to address this +/-1,500 If of pipe to increase capacity, the system capacity may be increased.

While there appears to be sufficient capacity to consider flows from additional contributing areas in the future, and utilize the conveyance facility for regional purposes, it is recommended that the County:

- Study and implement a means to mitigate the current system bottleneck;
- Study and implement a system to effectively manage offsite flows to this regional system from future-developed areas within the sub-basin.


DRAFT 57th Conveyance Capacity Analysis.doc


DRAFT Capacity Analysis 57th Ave. Stormwater Conveyance System August, 2007


DRAFT 57th Conveyance Capacity Analysis.doc

DRAFT Capacity Analysis 57th Ave. Stormwater Conveyance System August, 2007

FIGURE 3: SCHEMATIC MODEL WITH HYDROLOGICAL INPUTS 57TH AVE. CONVEYANCE SYSTEM

DESCRIPTIONS OF EXISTING CONTRIBUTING AREAS

Basin A-1

Basin A-1 is bound by roads on all four sides; 57th Ave. to the north, Ben Burr to the east, 61st to the south and Palouse Hwy. to the west. Currently, the basin is developed as a plant nursery with a few residential single family homes. The basin generally flows from south to north. Flows eventually collect in a roadside ditch, run north along Palouse Highway and then cross via a culvert at the southeast corner of Palouse Hwy. and 57th Ave. The flows are then collected in a catch basin on the southwest corner of Palouse Highway and 57th Ave. and enter the storm system on 57th Ave. Basin A-1 is expected to be developed as a commercial property, which would increase runoff.

Basin A-2

Basin A-2 is the west half of Palouse Hwy. from 61st to 57th. Currently, the basin is half of a road section comprised of pavement, shoulder and roadside ditch. Runoff flows from south to north. Flows are collected in a roadside ditch and conveyed north to a catch basin on the southwest corner of Palouse Highway and 57th Ave., where they enter the storm system on 57th Ave. Little change is expected for this basin, with the exception of a road widening which could include curb and drainage structures.

Basin B-1

Basin B-1 is a housing development on 58th Ave. It is bordered by housing developments to the south and north, Palouse Hwy. to the east and a retirement home to the west. Runoff flows from east to west, where the flows are collected by a pond on the west edge of the basin. The pond has an overflow to a conveyance ditch that flows to a large pond located on the retirement home property, also in Basin D. Currently, this development is considered to be built out residential.

Basin B-2

Basin B-2 is comprised of the Moran Prairie Grange building and a housing development that is currently half completed. The basin is bordered by Palouse Hwy. to the east, 61st Ave. to the south and developments to the west and north. Runoff generally flows from southeast to northwest. Flows are mainly over ground flows that, through grading, lead toward the pond in the northwestern corner; however, there are structures that collect flows in front of the duplex type properties and convey them via pipe to the pond as well. This pond, like the pond in Basin B-1, also has an overflow to the conveyance ditch. Currently, the un-developed piece has a separate system where runoff is collected in a ditch and infiltrates; however, future development will require larger or additional facilities. It is assumed that the Grange will most likely remain as is or be improved in a similar configuration well into the future.

Basin C

Basin C is a comprised of two single family residential houses and two duplex type properties. These residences are bordered by a retirement home to the west and the south, a development to the south, Palouse Hwy. to the east and 57th Ave. to the north. Runoff generally flows northeasterly to 57th Ave. Stormwater won't flow to 57th Ave. until it reaches a certain storm level due to the lower elevations of the property compared to 57th Ave. Currently, it appears that the pond serving the duplex property does not have a direct outlet to the storm system on 57th Ave.; therefore, it is assumed that it would overflow into the street. The single residences don't have any storm features, like many home sites, and will flow into

the street at a certain storm level. Based on the date of the duplexes it assumed that these will remain into the future. However, the single residences will most likely become commercial developments.

Basin B-3

Basin B-3 is a retirement home site that is bordered by housing developments all around except for 57th to the north. Runoff travels in a variety of directions, however, it generally flows to the north. Flows are collected in a conveyance ditch, flow over pavement and along curbs to a pond via pipe outlets and curb inlets. The pond has a structure that outlets into the storm pipe system on 57th Ave. Ponds in Basin B-1 and B-2 also overflow into the conveyance ditch. Currently, this basin is completely developed.

Basin D

Basin D is the east half of a portion of a housing development and contains the east half of Rebecca St. It is bordered by a retirement home to the east, housing developments to the south and west and 57th Ave. to the north. Runoff generally flows from south to north. Flows run to a curb and gutter and flow north along Rebecca St. to a pond located on the north edge of the basin. This pond has a structure that outlets to the storm pipe system on 57th Ave. Currently, this basin is completely developed.

Basin E

Basin E is the west half of a portion of a housing development and contains the west half of Sycamore St. It is bordered by housing developments to the south, east, and west and 57th Ave. to the north. Runoff generally flows from south to north into a detention pond in the northwest corner of the basin. This pond has a structure that outlets to the storm pipe system on 57th Ave. Currently, this basin completely developed.

Basin F-1

Basin F-1 is the east half of Freya St., a portion of the north side of 61st and the rear portions of lots in a housing development from 61st Ave. to 57th Ave. The basin is bordered by housing developments to the east and 57th Ave. to the north. The basin consists of half widths of pavement, roadside ditch and fenced backyards. Runoff generally flows from south to north. Flows collect in a roadside ditch and are conveyed north along Freya St. to a structure connecting to the storm pipe system on 57th Ave. via a storm pipe. Basin F-1 collects flows from Basins F-3, F-4 and F-5. Basin F-3 enters mid-basin via an outlet pipe into the ditch. The ditch of Basin F-4, which includes Basin F-5 flows, enters the basin at the intersection of 61st and Freya St. via a culvert. Currently, this basin is completely developed except for one home site that could be made into two home sites.

Basin F-2

Basin F-2 is the west half of Freya St. from approximately 61st Ave. to 57th Ave. The basin is bordered by vacant land and a large lot development to the west, natural grade breaks to the south and 57th Ave. to the north. The basin consists of a typical rural road section which, in this case, would be half of a road and a roadside ditch. Runoff generally flows from south to north. Flow runs north along Freya St. in a roadside ditch until both the ditch and flow terminate near the southwest corner of Freya St. and 57th Ave. Currently, the basin is limited in size; however, when future development occurs it would increase both pervious and impervious flows.

Basin F-3

Basin F-3 is a development that contains single family housing. The basin is bordered by housing developments all around except for a retirement home that borders a portion to the north. The basin

contains the southern portions of Sycamore St. and Rebecca St., Julia St. and half of 61st Ave. Runoff generally flows from the southeast corner to the west. Flow runs west along 61st Ave. and enters Julia St., which conveys it north to structures connected to a storm pipe system. The storm pipe system conveys flows west to an outlet pipe that releases them into a roadside ditch that continues the flow north along Freya St. Flows run north along Rebecca and Sycamore to structures also connected to the same storm pipe system. Currently, the basin is completely developed.

Basin F-4

Basin F-4 is farm land with two single family structures and agriculture related structures. The basin is bordered by natural grade breaks to the south. The basin contains half of Palouse Hwy. to the east, Waneta Rd. to southeast, half of 61st Ave. to the north and Freya St. to the west. Runoff generally flows from the southeast corner to the west. There are roadside ditches along Waneta Rd., 61st Ave. and Freya St. that convey flows. The ditch along Waneta Rd. flows to the northeast. The ditch along 61st Ave. flows to the west and terminates at the ditch along Freya St., which runs north. Flows from Basin F-5 are collected in a culvert that crosses the Palouse Hwy. and conveyed in the roadside ditch that runs along 61st Ave. The flows from Basin F-4 enter Basin F-1 via a culvert that crosses 61st Ave. They continue north along another roadside ditch that runs along Freya St. Currently, the basin is mostly farm land and will be fully developed in the future with residential housing.

Basin F-5

Basin F-5 is a small basin with a fire station that is bordered by a natural grade break to the south. The basin also contains half of Ben Burr Rd. to the east, half of 61st Ave. to the north and half of Palouse Hwy. to the west. Runoff generally flows from the southeast corner to the west. There are roadside ditches along Ben Burr Rd., 61st Ave. and Palouse Hwy. that convey flows. The ditches along Ben Burr Rd. and Palouse Hwy. flow to the north and the ditch along 61st Ave. flows west. Flows in the ditch along Ben Burr enter the ditch that runs along 61st Ave. The flows from Basin F-5 enter Basin F-4 via a culvert the crosses Palouse Hwy. They continue west along another roadside ditch that runs along 61st Ave. Currently, this site is developed with a fire station however it is possible that future commercial development will occur.

EXISTING CONDITIONS ANALYSIS INPUT PARAMETERS SUMMARY

DRAFT 57th Conveyance Capacity Analysis.doc

DRAFT Capacity Analysis 57th Ave. Stormwater Conveyance System August, 2007

Hydrologic Input Parameters Summary Existing Conditions

Basin ID	Total Area (sf)	Total Area (ac)	Sheet Flow (ft)	Slope (%)	Mannings n-value	Shallow Flow (ft)	Siope (%)	Paved or Unpaved	Channel Flow (ft)	Slope (%)	Mannings n-value	Soil Name	Soil Group	Existing	Notes:		
A-1	383492	8.80	200	2.00%	0.170	270	2.00%	U	1000	2.00%	0.025	Glenrose	B	86	Existing Nursery and Residential, weighted CN		
A-2	46499		1.07 Tc = 5 min. C								Glenrose/Uhlig	8		Road Area			
621-0	94206	2.16			0.150							Glennese/Unig	Bar (Barris	2-75	Built Out Residential Manual Manual And Andrews		
	267106	613	200	2.00%	0.025	150	2.00%		#ACOT #	1.25%	0.026	licient setuble.	B		Miceo USB weigh ad CN		
8-3*	181023	4.16			0.150				550	1.50%	0.015	Glenrose/Uhilg	Barres Barres	95	Existing Assided Living Center		
C	67703	1.55	100	2.50%	0.150	400	2.50%	Р	-		-	Glenrose	B	75	Built Out Residential		
D	101292	2.33	140	1.00%	0.150	500	1.00%	Р	-	-	-	Marble/Uhlig	A/B	75	Built Out Residential		
E	65684	1.51	70	1.00%	0.150	500	1.00%	Р	-	-	-	Marble/Uhlig	A/B	75	Built Out Residential		
F1	149767	3.44	100	1.00%	0.150	-	-	-	1550	1.00%	0.025	Bong/Phoebe	A/B	75	Built Out Residential		
F2	79684	1.83	50	2.00%	0.150	-	-	-	1500	1.00%	0.025	Bong/Phoebe	A/B	98	Road Area		
F3	412723	9.47	150	1.50%	0.150	550	1.75%	P	800	3.00%	0.013	Marble/Uhlig	A/B	75	Built Out Residential		
F 4	833867	19.14	150	1.00%	0.150	450	1.00%	Р	1250	1.00%	0.025	Glenrose/Uhlig	В	72	Farm house, mostly cultivated soils		
F5	249210	5.72	200	2.50%	0.150	350	2.75%	U	-	-	-	Glenrose/Uhlig	В	82	Firestation with grassland, weighted CN		
01	21163	0.49									Glenrose/Uhlig	B	98	Road Area			
02	24247	0.56									Glenrose/Uhlig	B	98	Road Area			
03	22841	0.52	Tc = 5 min.								Glenrose/Uhlig	B	98	Road Area			
04	23493	0.54	Tc = 5 min.								Glenrose/Uhlig	B	98	Road Area			
05	23959	0.55	Tc = 5 min.								Glenrose/Uhlig	B	98	Road Area			
06	24229	0.56	Tc = 5 min.								Glenrose/Uhlig	В	98	Road Area			
07	23637	0.54					Tc = 5 m	in.				Glenrose/Uhlig	8	98	Road Area		
08	23916	0.55					Tc = 5 m					Glenrose/Uhlig	В	98	Road Area		
09	17752	0.41					Tc = 5 m	in.				Glenrose/Uhlig	B	98	Road Area		
010	11653	0.27					Tc = 5 m	in.				Glenrose/Uhlig	B	98	Road Area		
011	19159	0.44	1				Tc = 5 m	in.				Glenrose/Uhlig	B	98	Road Area		
012	24038	0.55					Tc = 5 m	in.				Glenrose/Uhlig	В	98	Road Area		
013	23947	0.55	Tc = 5 min.							Glenrose/Uhlig	B	98	Road Area				
014	25232	0.58	Tc ≈ 5 min.							Glenrose/Uhlig	B	98	Road Area				
015	21071	0.48	Tc = 5 min.							Glenrose/Uhlig	B	98	Road Area				
016	20999	0.48	Tc = 5 min.							Glenrose/Uhlig	В	98	Road Area				
017	18449	0.42	Tc = 5 min.								Glenrose/Uhlig	B	98	Road Area			
018	22935	0.53	Tc = 5 min.								Glenrose/Uhlig	В	98	Road Area			
019	5945	0.14	Tc = 5 min.							Glenrose/Uhlig	B	98	Road Area				
020	16479	0.38	Tc = 5 min.								Glenrose/Uhlig	B	98	Road Area			
021	47106	1.08	Tc = 5 min.								Glenrose/Uhlig	В	98	Road Area			
022	20252	0.46	Tc ≠ 5 min.								Glenrose/Uhlig	В	98	Road Area			

* Due to Existing on-site detention facilities, this area was modeled assuming pre-existing conditions. See sheet 2 of 2.

Hydrologic Input Parameters Summary Pre-Existing Conditions

Basin ID	Total Area (sf)	Total Area (ac)	Sheet Flow (ft)		Mannings n-value			Paved or Unpaved			Mannings n-value	Soil Name	Soil Group	CN Existing	Notes:
B-1	94206	2.16	150	2.00%	0.170	250	2.00%	U	-	-	-	Glenrose/Uhlig	В	69	Pasture, Grassland, or Range - Fair Condition
B-2	267106	6.13	200	2.00%	0.170	550	2.00%	U	-	-	-	Glenrose/Uhlig	B	69	Pasture, Grassland, or Range - Fair Condition
B-3	181023	4.16	100	1.50%	0.170	550	1.50%	U	-	-	-	Glenrose/Uhlig	В	69	Pasture, Grassland, or Range - Fair Condition

SPOKANE REGIONAL STORMWATER MANUAL

Cover type and hydrologic condition	Α	B	С	D
Open Space (lawns, parks, golf courses, cemeteries, landscaping, etc.): 1				
Poor condition (grass cover <50% of the area)	6 8	79	86	89
Fair condition (grass cover on 50% to 75% of the area)	49	69	79	84
Good condition (grass cover on >75% of the area)	39	61	74	80
Impervious Areas:				
Open water bodies: lakes, wetlands, ponds etc.	100	100	100	100
Paved parking lots, roofs, driveways, etc. (excluding right-of-way)	98	98	98	98
Porous Pavers and Permeable Interlocking Concrete (assumed as 85% impervious and 15%)	lawn):			
Fair lawn condition (weighted average CNs)	91	94	96	97
Gravel	76	85	89	91
Dirt	72	82	87	89
Pasture, Grassland, or Range-Continuous Forage for Grazing:				
Poor condition (ground cover <50% or heavily grazed with no mulch).	68	79	86	89
Fair condition (ground cover 50% to 75% and not heavily grazed)	49	69	79	84
Good condition (ground cover >75% and lightly or only occasionally grazed)	39	61	74	80
Cultivated Agricultural Lands;				
Row Crops (good) e.g. corn, sugar beets, soy beans	64	75	82	85
Small Grain (good) e.g. wheat, barley, flax	60	72	80	84
Meadow (continuous grass, protected from grazing and generally mowed for hay)	30	58	71	78
Brush (brush-weed-grass mixture with brush the major element):	•*************************************			
Poor (<50% ground cover)	48	67	77	83
Fair (50% to 75% ground cover)	35	56	70	77
Good (>75% ground cover) ²	30	48	65	73
Woods - grass combination (orchard or tree farm) ³ :				
Poor	57	73	82	86
Fair	43	65	76	82
Good	32	58	72	79
Woods:				
	45	66	77	83
Poor (Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning) Fair (Woods are grazed but not burned, and some forest litter covers the soil)	45 36	60	73	63 79
Good (Woods are protected from grazing, and litter and brush adequately cover the soil)	30 30	55	70	79
	30			
Herbaccous (mixture of grass, weeds, and low-growing brush, with brush the minor element) ⁴ :		eΔ	07	02
Poor (<30% ground cover)		80	87	93
Fair (30% to 70% ground cover) Good (>70% ground cover)		71	81	89
		62	74	85
Sagebrush with Grass Understory ⁴ :				
Poor (<30% ground cover)		67	80	85
Fair (30% to 70% ground cover)		51	63	70
Good (>70% ground cover)		35	47	- 55

TABLE 5-1 RUNOFF CURVE NUMBERS ANTECEDENT RUNOFF CONDITION (ARC) II

¹ Composite CNs may be computed for other combinations of open space cover type.

² Actual curve number is less than 30; use CN = 30 for runoff computations.

³ CNs shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CNs for woods and pasture.

⁴ Curve numbers have not been developed for group A soils.

Public Review Draft - July 2005

Chapter 5 - Hydrologie Analysis and Design

Manning's n-Values

Description	Manning's
Pipes Reinforced concrete Vitrified clay pipe Smooth welded pipe Corrugated metal pipe Polyvinyl chloride (PVC)	0.013 0.013 0.011 0.023 0.010
Natural Channels Gravel beds, Straight Gravel beds, large boulders	0.025 0.040
Earth, straight, some grass Earth, winding, no vegetation Earth, winding	0.026 0.030 0.050
Miscellaneous Smooth surfaces (concrete, asphalt, bare soil)	0.011
Fallow (no residue)	0.05
Cultivated soils	0.06-0.17
Short grass Dense grass Bermuda grass	0.15 0.24 0.41
Light underbrush woods Dense underbrush woods	0.40 0.80

Source: Soil Conservation Service TR-55

mk:@MSITStore:C:\Program%20Files\Hydraflow\Hydrographs%202007\Hydro2007.chm... 7/31/2007

Previous Top

<u>'s "n"</u>

 λ/g

planners surveyors engineers landscape architects

CALCULATIONS: CURVE NUMBER & WEIGHTED CURVE NUMBER SUMMARY BASIN AT: Woods - Grass Combination, Fair 1.94 65 Pasture, Grassland, or Range, Poor 1.79 79 Impervious Arcas - Graves 0.83 85 Impervious Areas - Roots 1.73 98 Impervious Areas - Pavement & Row 251 98 85.6 = 86 BASIN AZ: Impervious Area - Pavement & Row 98 BASIN BI: CN = 15 Residential Development Analysis BASIN BZ: Impervices Areas - Dirt 1.73 82 Residential 1.64 75 Impernoes Areas - Gravel 85 81.5 ~ BZ 2.77 BASIN 83: CN = 95 Commercial Development Analy 515 BASINC: CN = 75 Residential BASIN D = CN = 75 Residential BASIN E: CN=75 Residentian BASIN FI: CN=75 Residential BASIN FZ: Impervious Areas - Pavement & Row 98 BASIN F3: IN= 75 Residential BASIN FY: Cultivated Agriculture Lands - Sngall brain 72 BASIN FS: commercial 2.86 95 Pasture, brassland, or Range - Fair 2.86 69 Project 57th Study Subject Lurve Number Summary Sheet No. _____ of ___ Job No. 35/19 Prepared by NAP Date 3/7/07 Checked by Date

HYDROLOGIC CALCULATIONS SUMMARY

DRAFT 57th Conveyance Capacity Analysis.doc

DRAFT Capacity Analysis 57th Ave. Stormwater Conveyance System August, 2007

REGIONAL (REGION 3) STORM

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time Interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description	
1	SBUH Runoff	0.612	6	726	17,865		udityis sound		Basin A-1	
2	SBUH Runoff	0.280	8	720	5,353				Basin A-2	
3	Combine	0.874	6	720	23,219	1, 2			Com. 1,2	
4	SBUH Runoff	0.125	6	720	2,401				Basin 0-1	
5	Combine	0.999	6	720	25,620	3,4			Com. 3,4	
6	SBUH Runoff	0.146	6	720	2,802				Basin 0-2	
7	SBUH Runoff	0.017	6	1434	742				Basin B-1	
8	SBUH Runoff	0.047	6	1434	2,102				Basin B-2	
9	SBUH Runoff	0.032	6	1 43 4	1,429				Basin B-3	
10	Combine	0.096	6	1434	4,272	7, 8, 9			Com. 7-9	
11	SBUH Runoff	0.022	6	816	1,111				Basin C	
12	SBUH Runoff	0.033	6	840	1,725				Basin D	
13	Combine	1.163	6	720	35,530	5, 6, 10, 11	, 12		Com. 5,6,10-12	
14	SBUH Runoff	0.170	6	720	3,252				Basin 0-3	
15	Combine	1.333	6	720	38,782	13, 14			Com. 13,14	
16	SBUH Runoff	0.141	6	720	2,702		*****		Basin 0-4	
17	SBUH Runoff	0.022	6	816	1,118				Basin E	
18	SBUH Runoff	0.248	6	726	8,333		San da al carpo		Basin F5	
19	SBUH Runoff	0.196	6	1410	9,960				Basin F4	
20	Combine	0.329	6	840	18,293	18, 19			Com. 18,19	
21	SBUH Runoff	0.134	6	840	7,012				Basin F3	
22	Combine	0.464	6	840	25,305	20, 21			Com. 20,21	
23	SBUH Runoff	0.460	8	720	9,156				Basin F2	
24	SBUH Runoff	0.050	8	840	2,547				Basin F1	
25	Combine	0.751	6	720	37,008	22, 23, 24			Com. 22-24	
26	Combine	2.233	6	720	79,609	15, 16, 17,	25		Com. 15-17,25	
27	SBUH Runoff	0.144	6	720	2,752		***		Basin 0-5	
28	SBUH Runoff	0.144	6	720	2,752				Basin 0-6	
29	Combine	2.521	6	720	85,112	26, 27, 28			Com. 26-28	
30	SBUH Runoff	0.141	6	720	2,702				Basin 0-7	
31	SBUH Runoff	0.136	8	720	2,602				Basin 0-8	
32	Combine	2.798	6	720	90,416	29, 30, 31			Com. 29-31	
33	SBUH Runoff	0.107	6	720	2,051				Basin 0-9	
	57th Regional Storm.gpw				Return f			Monday, Aug 6, 2007		

Hyd. No.	Hydrograph type (orlgin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
34	SBUH Runoff	0.073	6	720	1,401		******		Basin 0-10
35	Combine	2.978	6	720	93,868	32, 33, 34			Com. 32-34
36	SBUH Runoff	0.120	6	720	2,301				Basin 0-11
37	SBUH Runoff	0.146	6	720	2,802				Basin 0-12
38	Combine	3.245	6	720	98,971	35, 36, 37			Com. 35-37
39	SBUH Runoff	0.146	6	720	2,802				Basin 0-13
40	SBUH Runoff	0.154	6	720	2,952				Basin 0-14
41	Combine	3.545	6	720	104,724	38, 39, 40	-		Com. 38-40
42	SBUH Runoff	0.128	6	720	2,451				Basin 0-15
43	SBUH Runoff	0.105	6	720	2,001				Basin 0-16
44	Combine	3.778	6	720	109,177	41, 42, 43			Com. 41-43
45	SBUH Runoff	0.115	6	720	2,201				Basin 0-17
46	SBUH Runoff	0.149	6	720	2,852				Basin 0-18
47	Combine	4.042	6	720	114,230	44, 45, 46			Com. 44-46
48	SBUH Runoff	0.039	6	720	750				Basin 0-19
49	Combine	4.081	6	720	114,981	47, 48			Com. 47,48
57tl	n Regional St	orm.gpv	V]	Return F	Period: 2 Ye	ear	Monday, A	ug 6, 2007

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description		
1	SBUH Runoff	1.222	6	726	32,029				Basin A-1		
2	SBUH Runoff	0.393	6	720	7,660			antoreat	Basin A-2		
3	Combine	1.595	6	720	39,689	1,2			Com. 1,2		
4	SBUH Runoff	0.1 76	6	720	3,436				Basin 0-1		
5	Combine	1.772	6	720	43,125	3, 4			Com. 3,4		
6	SBUH Runoff	0.206	6	720	4,009				Basin 0-2		
7	SBUH Runoff	0.045	6	816	2,290				Basin B-1		
8	SBUH Runoff	0.125	6	840	6,488				Basin B-2		
9	SBUH Runoff	0.086	6	840	4,410				Basin B-3		
10	Combine	0.256	6	840	13,189	7, 8, 9			Com. 7-9		
11	SBUH Runoff	0.081	6	726	2,629			••••	Basin C		
12	SBUH Runoff	0.102	6	750	4,083				Basin D		
13	Combine	2.236	6	720	67,034	5, 6, 10, 11	, 12		Com. 5,6,10-12		
14	SBUH Runoff	0.239	6	720	4,653				Basin 0-3		
15	Combine	2.475	6	720	71,687	13, 14			Com. 13,14		
16	SBUH Runoff	0.198	6	720	3,866				Basin 0-4		
17	SBUH Runoff	0.078	6	726	2,646				Basin E		
18	SBUH Runoff	0.602	6	726	16,266				Basin F5		
19	SBUH Runoff	0.5 76	6	816	26,439				Basin F4		
20	Combine	1.035	6	750	42,706	18, 19			Com. 18,19		
21	SBUH Runoff	0.422	6	750	16,595		***		Basin F3		
22	Combine	1.457	6	750	59,301	20, 21			Com. 20,21		
23	SBUH Runoff	0.648	6	720	13,100		******	******	Basin F2		
24	SBUH Runoff	0.168	6	726	6,028				Basin F1		
25	Combine	2.212	6	726	78,429	22, 23, 24			Com. 22-24		
26	Combine	4.921	6	720	156,628	15, 16, 17,	25		Com. 15-17,25		
27	SBUH Runoff	0.202	6	720	3,937				Basin 0-5		
28	SBUH Runoff	0.202	6	720	3,937		an accident solve		Basin 0-6		
29	Combine	5.325	6	720	164,502	26, 27, 28			Com. 26-28		
30	SBUH Runoff	0.198	6	720	3,866				Basin 0-7		
31	SBUH Runoff	0.191	6	720	3,722				Basin 0-8		
32	Combine	5.715	6	720	172,091	29, 30, 31			Com. 29-31		
33	SBUH Runoff	0.151	6	720	2,935		analy official and		Basin 0-9		
	57th Regional Storm.gpw					Return Period: 10 Year			Monday, Aug 6, 2007		

-									
Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
34	SBUH Runoff	0.103	6	720	2,004		2 9-1000-00		Basin 0-10
35	Combine	5.968	6	720	177,030	32, 33, 34	MANNA		Com. 32-34
36	SBUH Runoff	0.169	6	720	3,293		B#4487		Basin 0-11
37	SBUH Runoff	0.206	6	720	4,009	[Basin 0-12
38	Combine	6.343	6	720	184,332	35, 36, 37			Com. 35-37
39	SBUH Runoff	0,206	6	720	4,009			and address of the	Basin 0-13
40	SBUH Runoff	0.217	6	720	4,224				Basin 0-14
41	Combine	6.766	6	720	192,564	38, 39, 40			Com. 38-40
42	SBUH Runoff	0.180	6	720	3,508			*****	Basin 0-15
43	SBUH Runoff	0.147	6	720	2,863				Basin 0-16
44	Combine	7.093	6	720	198,935	41, 42, 43	-		Com. 41-43
45	SBUH Runoff	0.162	6	720	3,150				Basin 0-17
46	SBUH Runoff	0.209	6	720	4,080				Basin 0-18
47	Combine	7.464	6	720	206,166	44, 45, 46			Сот. 44-46
48	SBUH Runoff	0.055	6	720	1,074				Basin 0-19
49	Combine	7.519	6	720	207,239	47, 48	to come dide the		Com. 47,48
57t	h Regional Si	torm.gpv	N		Return F	Period: 10 \	/ear	Monday, A	ug 6, 2007

Hydraflow I	Hydrographs	bγ	Intelisolve v9.23
-------------	-------------	----	-------------------

iyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description	
1	SBUH Runoff	1.669	6	726	42,325				Basin A-1	
2	SBUH Runoff	0.468	6	720	9,203				Basin A-2	
3	Combine	2.117	6	720	51,528	1, 2			Com. 1,2	
4	SBUH Runoff	0.210	6	720	4,128				Basin 0-1	
5	Combine	2.327	6	720	55,656	3, 4			Com. 3,4	
6	SBUH Runoff	0.245	6	720	4,817				Basin 0-2	
7	SBUH Runoff	0.083	6	810	3,662		4-2		Basin B-1	
8	SBUH Runoff	0.230	6	816	10,375				Basin B-2	
9	SBUH Runoff	0.158	6	810	7,052				Basin B-3	
10	Combine	0.471	6	810	21,088	7, 8, 9			Com. 7-9	
11	SBUH Runoff	0.142	6	720	3,862				Basin C	
12	SBUH Runoff	0.181	6	726	5,999				Basin D	
13	Combine	3.243	6	720	91,421	5, 6, 10, 11	, 12		Com. 5,6,10-12	
14	SBUH Runoff	0.285	6	720	5,591				Basin 0-3	
15	Combine	3.528	6	720	97,012	13, 14			Com. 13,14	
16	SBUH Runoff	0.236	6	720	4,644				Basin 0-4	
17	SBUH Runoff	0.136	6	726	3,888		Annual Statistics		Basin E	
18	SBUH Runoff	0.873	6	726	22,247				Basin F5	
19	SBUH Runoff	1. 001	6	750	40,366		*		Basin F4	
20	Combine	1.841	6	726	62,613	18, 19			Com. 18,19	
21	SBUH Runoff	0.754	6	726	24,381				Basin F3	
22	Combine	2.595	6	726	86,994	20, 21			Com. 20,21	
23	SBUH Runoff	0.772	6	720	15,740				Basin F2	
24	SBUH Runoff	0.296	6	726	8,856				Basin F1	
25	Combine	3.598	6	726	111,590	22, 23, 24		-	Com. 22-24	
26	Combine	7.453	6	720	217,134	15, 16, 17,	25		Com. 15-17,25	
27	SBUH Runoff	0.241	6	720	4,731				Basin 0-5	
28	SBUH Runoff	0.241	6	720	4,731				Basin 0-6	
29	Combine	7.934	6	720	226,595	26, 27, 28			Com. 26-28	
30	SBUH Runoff	0.236	6	720	4,644		al granter of		Basin 0-7	
31	SBUH Runoff	0.228	6	720	4,472				Basin 0-8	
32	Combine	8.398	6	720	235,712	29, 30, 31			Com, 29-31	
33	SBUH Runoff	0.179	6	720	3,526				Basin 0-9	
57th Regional Storm.gpw					Return Period: 25 Year			Monday, Aug 6, 2007		

6

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
34	SBUH Runoff	0.123	6	720	2,408				Basin 0-10
35	Combine	8.700	6	720	241,647	32, 33, 34			Com. 32-34
36	SBUH Runoff	0.201	6	720	3,956				Basin 0-11
37	SBUH Runoff	0.245	6	720	4,817			an and day of	Basin 0-12
38	Combine	9.147	6	720	250,419	35, 36, 37	the second sec 10 dd		Com. 35-37
39	SBUH Runoff	0.245	6	720	4,817				Basin 0-13
40	SBUH Runoff	0.258	6	720	5,075		10 10 100 L		Basin 0-14
41	Combine	9.650	6	720	260,311	38, 39, 40	and its finance		Com. 38-40
42	SBUH Runoff	0.214	6	720	4,214				Basin 0-15
43	SBUH Runoff	0.175	6	720	3,440		al and a second s		Basin 0-16
44	Combine	10.04	6	720	267,965	41, 42, 43			Com. 41-43
45	SBUH Runoff	0.193	6	720	3,784		~~~~		Basin 0-17
46	SBUH Runoff	0.250	6	720	4,903				Basin 0-18
47	Combine	10.48	6	720	276,652	44, 45, 46			Com. 44-46
48	SBUH Runoff	0.066	6	720	1,290		Note To		Basin 0-19
49	Combine	10.55	6	720	277,942	47, 48	a da a constitu		Com. 47,48
57t	n Regional Sl	orm.gpw	v		Return F	Period: 25 Y	/ear	Monday, A	ug 6, 2007

7

Hydrograph Summary Report

Hydraftow Hydrographs by Intelisoive v9.23

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SBUH Runoff	1 .901	6	726	47,654		1 10-10-10		Basin A-1
2	SBUH Runoff	0.506	6	720	9,976		*****		Basin A-2
3	Combine	2.386	6	720	57,630	1, 2			Com. 1,2
4	SBUH Runoff	0.227	6	720	4,475		an an said the St	per vije daar te de	Basin 0-1
5	Combine	2.613	6	720	62,105	3,4			Com. 3,4
6	SBUH Runoff	0.265	6	720	5,221				Basin 0-2
7	SBUH Runoff	0.112	6	726	4,430				Basin B-1
8	SBUH Runoff	0.291	6	810	12,552				Basin B-2
9	SBUH Runoff	0.203	6	750	8,532				Basin B-3
10	Combine	0.599	6	750	25,514	7, 8, 9			Com. 7-9
11	SBUH Runoff	0.175	6	720	4,530				Basin C
12	SBUH Runoff	0.226	6	726	7,037				Basin D
13	Combine	3.801	6	720	104,407	5, 6, 10, 11	, 12		Com. 5,6,10-12
14	SBUH Runoff	0.307	6	720	6,060	*****		-1	Basin 0-3
15	Combine	4.108	6	720	110,467	13, 14	14 4 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -		Com. 13,14
16	SBUH Runoff	0.255	6	720	5,034				Basin 0-4
17	SBUH Runoff	0.168	6	726	4,560				Basin E
18	SBUH Runoff	1.017	6	726	25,390				Basin F5
1 9	SBUH Runoff	1.280	6	750	48,033				Basin F4
20	Combine	2.294	6	726	73,423	18, 19			Com. 18,19
21	SBUH Runoff	0.938	6	726	28,601			-	Basin F3
22	Combine	3.232	6	726	102,024	20, 21			Com. 20,21
23	SBUH Runoff	0.834	6	720	17,061				Basin F2
24	SBUH Runoff	0.367	6	726	10,389			****	Basin F1
25	Combine	4.363	6	726	129,474	22, 23, 24			Com. 22-24
26	Combine	8. 849	6	720	249,536	15, 16, 17,	25		Com. 15-17,25
27	SBUH Runoff	0.260	6	720	5,128				Basin 0-5
28	SBUH Runoff	0.260	6	720	5,128				Basin 0-6
29	Combine	9.370	6	720	259,791	26, 27, 28			Com. 26-28
30	SBUH Runoff	0.255	6	720	5,034		Land GR		Basin 0-7
31	SBUH Runoff	0.246	6	720	4,848				Basin 0-8
32	Combine	9.871	6	720	269,673	29, 30, 31			Com. 29-31
33	SBUH Runoff	0.194	6	720	3,822				Basin 0-9
57th Regional Storm.gpw					Return F	Period: 50 Y	Year	Monday, A	ug 6, 2007

Hyd.

No.

Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
SBUH Runoff	0.132	6	720	2,610				Basin 0-10
Combine	10.20	6	720	276,106	32, 33, 34			Com. 32-34
SBUH Runoff	0.217	6	720	4,289		A MMANA		Basin 0-11
SBUH Runoff	0.265	6	720	5,221				Basin 0-12
Combine	10.68	6	720	285,616	35, 36, 37			Com. 35-37
SBUH Runoff	0.265	6	720	5,221				Basin 0-13
SBUH Runoff	0.279	6	720	5,501				Basin 0-14
Combine	11.22	6	720	296,337	38, 39, 40			Corn. 38-40
SBUH Runoff	0.232	6	720	4,568				Basin 0-15
SBUH Runoff	0.189	6	720	3,729				Basin 0-16
Combine	11.64	6	720	304,634	41, 42, 43			Com. 41-43
SBUH Runoff	0.208	6	720	4,102		we had a few man		Basin 0-17
SBUH Runoff	0.269	6	720	5,314				Basin 0-18
Combine	12.12	6	720	314,051	44, 45, 46			Com. 44-46
SBUH Runoff	0.071	6	720	1,398			*****	Basin 0-19
Combine	12.19	6	720	315,449	47, 48			Com. 47,48

57th Regional Storm.gpw

Monday, Aug 6, 2007

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SBUH Runoff	2.136	6	726	53,082		ay de angeler ay		Basin A-1
2	SBUH Runoff	0.543	6	720	10,749				Basin A-2
3	Combine	2.659	6	720	63,830	1, 2	**		Com. 1,2
4	SBUH Runoff	0.244	6	720	4,822				Basin 0-1
5	Combine	2.903	6	720	68,652	3, 4			Com. 3,4
6	SBUH Runoff	0.284	6	720	5,626				Basin 0-2
7	SBUH Runoff	0.149	6	726	5,247				Basin B-1
8	SBUH Runoff	0.369	6	750	14,867				Basin B-2
9	SBUH Runoff	0.262	6	726	10,106		****		Basin B-3
10	Combine	0.770	6	750	30,220	7, 8, 9	17 (2017) - 10 10		Com. 7-9
11	SBUH Runoff	0.211	6	720	5,228		******		Basin C
12	SBUH Runoff	0.273	6	726	8,121		******		Basin D
13	Combine	4.384	6	720	117,847	5, 6, 10, 1	, 12		Com. 5,6,10-12
14	SBUH Runoff	0.330	6	720	6,530		WE PE OF \$730⁻¹⁶	and 171700	Basin 0-3
15	Combine	4.714	6	720	124,377	13, 14			Com. 13,14
16	SBUH Runoff	0.274	6	720	5,425				Basin 0-4
17	SBUH Runoff	0.202	6	720	5,263		Mad for A form		Basin E
18	SBUH Runoff	1.164	6	726	28,618				Basin F5
19	SBUH Runoff	1.609	6	726	56,107		We are surgering and		Basin F4
20	Combine	2.773	6	726	84,725	18, 19			Com. 18,19
21	SBUH Runoff	1.131	6	726	33,008				Basin F3
22	Combine	3.904	6	726	117,733	20, 21			Com. 20,21
23	SBUH Runoff	0.896	6	720	18,383				Basin F2
24	SBUH Runoff	0.441	6	726	11,990				Basin F1
25	Combine	5.165	6	726	148,106	22, 23, 24			Com. 22-24
26	Combine	10.31	6	720	283,170	15, 16, 17,	25		Com. 15-17,25
27	SBUH Runoff	0.279	6	720	5,525				Basin 0-5
28	SBUH Runoff	0.279	6	720	5,525				Basin 0-6
29	Combine	10.87	6	720	294,220	26, 27, 28			Com. 26-28
30	SBUH Runoff	0.274	6	720	5,425				Basin 0-7
31	SBUH Runoff	0.264	6	720	5,224				Basin 0-8
32	Combine	11.41	6	720	304,869	29, 30, 31			Com. 29-31
33	SBUH Runoff	0.208	6	720	4,119				Basin 0-9
57th Regional Storm.gpw					Return I	Period: 100	Voor	Monday A	ug 6, 2007

10

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time Interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
34	SBUH Runoff	0.142	6	720	2,813		х к найото		Basin 0-10
35	Combine	11.76	6	720	311,800	32, 33, 34			Com. 32-34
36	SBUH Runoff	0.234	6	720	4,621				Basin 0-11
37	SBUH Runoff	0.284	6	720	5,626		an an air a star		Basin 0-12
38	Combine	12.28	6	720	322,046	35, 36, 37	-		Com. 35-37
39	SBUH Runoff	0.284	6	720	5,626			and the statement of the	Basin 0-13
40	SBUH Runoff	0.300	6	720	5,927				Basin 0-14
41	Combine	12.86	6	720	333,599	38, 39, 40			Com. 38-40
42	SBUH Runoff	0.249	6	720	4,922		and and the		Basin 0-15
43	SBUH Runoff	0.203	6	720	4,018		and the second sec		Basin 0-16
44	Combine	13.31	6	720	342,540	41, 42, 43			Com. 41-43
45	SBUH Runoff	0.223	6	720	4,420		-		Basin 0-17
46	SBUH Runoff	0.289	6	720	5,726				Basin 0-18
47	Combine	13.83	6	720	352,686	44, 45, 46	percent in the of		Com. 44-46
48	SBUH Runoff	0.076	6	720	1,507		and the second second		Basin 0-19
49	Combine	13.90	6	720	354,192	47, 48	***		Com. 47,48
57ti	n Regional Si	torm.gpv	v		Return F	Period: 100	Year	Monday, A	ug 6, 2007

SHORT-DURATION STORM

Hydraflow Hydrographs by Intelisoive v9.23

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SBUH Runoff	4.295	5	70	17,876		bi çi çi çi da		Basin A-1
2	SBUH Runoff	3.587	5	60	5,355				5
3	Combine	6.997	5	60	-23,231	1, 2	e		Com. 1,2
4	SBUH Runoff	1.563	5	60	2,402				Basin 0-1
5	Combine	8.560	5	60	25,633	3,4			Com. 3,4
6	SBUH Runoff	1.824	5	60 `	2,803				Basin 0-2
7	SBUH Runoff	0.140	5	75	743				Basin B-1
8	SBUH Runoff	0.368	5	75	2,104				Basin B-2
9	SBUH Runoff	0.280	5	75	1,430				Basin B-3
10	Combine	0.788	5	75	4,278	7, 8, 9	and the state of		Com. 7-9
11	SBUH Runoff	0.361	5	70	1,112				Basin C
12	SBUH Runoff	0.376	5	75	1,727		Andrew Wilson		Basin D
13	Combine	11.06	5	60	35,552	5, 6, 10, 11	, 12		Com. 5,6,10-12
14	SBUH Runoff	2.117	5	60	3,253				Basin 0-3
15	Combine	13.18	5	60	38,805	13, 14			Com. 13,14
16	SBUH Runoff	1.759	5	60	2,703				Basin 0-4
17	SBUH Runoff	0.328	5	70	1,119		an anger 10 4000		Basin E
18	SBUH Runoff	2.212	5	70	8,339				Basin F5
19	SBUH Runoff	1.911	5	75	9,970			10.00 area of 10	Basin F4
20	Combine	4.038	5	70	18,309	18, 19			Com. 18,19
21	SBUH Runoff	1.584	5	75	7,018				Basin F3
22	Combine	5.621	5	70	25,328	20, 21			Com. 20,21
23	SBUH Runoff	4.496	5	60	9,159		******		Basin F2
24	SBUH Runoff	0.672	5	70	2,549				Basin F1
25	Combine	9.633	5	65	37,036	22, 23, 24			Com. 22-24
26	Combine	23.41	5	60	79,663	15, 16, 17,	25		Com. 15-17,25
27	SBUH Runoff	1.791	5	60	2,753		an menanarak		Basin 0-5
28	SBUH Runoff	1.791	5	60	2,753		a r (b. 1997)		Basin 0-6
29	Combine	27.00	5	60	85,168	26, 27, 28			Com. 26-28
30	SBUH Runoff	1.759	5	60	2,703		10, p 10 Miles		Basin 0-7
31	SBUH Runoff	1.693	5	60	2,602		······································		Basin 0-8
32	Combine	30.45	5	60	90,473	29, 30, 31	*******		Corn. 29-31
33	SBUH Runoff	1.335	5	60	2,052				Basin 0-9
	57th Regional Storm.gpw				Dature	Period: 2 Yo		Monday, Aug 6, 2007	

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
34	SBUH Runoff	0.912	5	60	1,401		~~~~~~		Basin 0-10
35	Combine	32.69	5	60	93,926	32, 33, 34			Com. 32-34
36	SBUH Runoff	1.498	5	60	2,302		******		Basin 0-11
37	SBUH Runoff	1.824	5	60	2,803				Basin 0-12
38	Combine	36.02	5	60	99,031	35, 36, 37			Com. 35-37
39	SBUH Runoff	1.824	5	60	2,803		an a		Basin 0-13
40	SBUH Runoff	1.921	5	60	2,953		-		Basin 0-14
41	Combine	39.76	5	60	104,787	38, 39, 40	arma words		Com. 38-40
42	SBUH Runoff	1.596	5	60	2,452				Basin 0-15
43	SBUH Runoff	1.303	5	60	2,002				Basin 0-16
44	Combine	42.66	5	60	109,241	41, 42, 43			Com. 41-43
45	SBUH Runoff	1.433	5	60	2,202				Basin 0-17
46	SBUH Runoff	1.856	5	60	2,853		Ramany das von syn-fil		Basin 0-18
47	Combine	45.95	5	60	114,296	44, 45, 46			Corn. 44-46
48	SBUH Runoff	0.488	5	60	751				Basin 0-19
49	Combine	46.44	5	60	115,046	47, 48			Com. 47,48
57tl	n Regional St	orm.gpv	v		Return F	Period: 2 Ye	ear	Monday, A	ug 6, 2007

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SBUH Runoff	7.898	5	70	32,045				Basin A-1
2	SBUH Runoff	5.034	5	60	7,662				5
3	Combine	11.73	5	60	39,708	1,2			Com. 1,2
4	SBUH Runoff	2.199	5	60	3,437		and a state of		Basin 0-1
5	Combine	13.93	5	60	43,145	3,4	and the second		Com. 3,4
6	SBUH Runoff	2.565	5	60	4,010				Basin 0-2
7	SBUH Runoff	0.506	5	75	2,292				Basin B-1
8	SBUH Runoff	1.340	5	75	6,494				Basin B-2
9	SBUH Runoff	1.014	5	70	4,414				Basin B-3
10	Combine	2.856	5	75	13,200	7, 8, 9			Com. 7-9
11	SBUH Runoff	0.932	5	65	2,631				Basin C
12	SBUH Runoff	0.980	5	70	4,086				Basin D
13	Combine	19.57	5	60	67,072	5, 6, 10, 11	, 12		Com. 5,6,10-12
14	SBUH Runoff	2.977	5	60	4,655				Basin 0-3
15	Combine	22.55	5	60	71,727	13, 14	, 19 - 1 9 - 19 - 19 - 19 - 19 - 19 - 19 - 19		Com. 13,14
16	SBUH Runoff	2.474	5	60	3,867		dia tenang dia s		Basin 0-4
17	SBUH Runoff	0.845	5	70	2,648				Basin E
18	SBUH Runoff	4.486	5	70	16,276				Basin F5
19	SBUH Runoff	5.658	5	70	26,461		****		Basin F4
20	Combine	10.14	5	70	42,736	18, 19			Com. 18,19
21	SBUH Runoff	4.144	5	70	16,607				Basin F3
22	Combine	14.29	5	70	59,344	20, 21			Com. 20,21
23	SBUH Runoff	6.390	5	60	13,105				Basin F2
24	SBUH Runoff	1.742	5	70	6,033				Basin F1
25	Combine	20.82	5	65	78,481	22, 23, 24	and gate and some		Corn. 22-24
26	Combine	43.98	5	65	156,723	15, 16, 17,	25		Com. 15-17,25
27	SBUH Runoff	2.519	5	60	3,939				Basin 0-5
28	SBUH Runoff	2.519	5	60	3,939				Basin 0-6
29	Combine	48.69	5	60	164,600	26, 27, 28	Personal - 1 (Calify		Com. 26-28
30	SBUH Runoff	2.474	5	60	3,867				Basin 0-7
31	SBUH Runoff	2.382	5	60	3,724		4		Basin 0-8
32	Combine	53.55	5	60	172,190	29, 30, 31			Com. 29-31
33	SBUH Runoff	1.878	5	60	2,936				Basin 0-9
	n Regional St				Return F			Monday, A	

lyđ. 10.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
34	SBUH Runoff	1.283	5	60	2,005		200 A 1990		Basin 0-10
35	Combine	56.71	5	60	177,131	32, 33, 34			Com. 32-34
36	SBUH Runoff	2.107	5	60	3,294			a 17 a 18 ⁻¹ 4 W	Basin 0-11
7	SBUH Runoff	2.565	5	60	4,010		- All all and some an		Basin 0-12
8	Combine	61.38	5	60	184,436	35, 36, 37	-		Com. 35-37
9	SBUH Runoff	2.565	5	60	4,010				Basin 0-13
ю	SBUH Runoff	2.703	5	60	4,225		*******		Basin 0-14
1	Combine	66.65	5	60	192,671	38, 39, 40			Com. 38-40
2	SBUH Runoff	2.245	5	60	3,509				Basin 0-15
3	SBUH Runoff	1.832	5	60	2,864				Basin 0-16
4	Combine	70.72	5	60	199,044	41, 42, 43			Com. 41-43
5	SBUH Runoff	2.016	5	60	3,151				Basin 0-17
6	SBUH Runoff	2.611	5	60	4,082				Basin 0-18
7	Combine	75.35	5	60	206,277	44, 45, 46			Com. 44-46
8	SBUH Runoff	0.687	5	60	1,074		and which the second		Basin 0-19
19	Combine	76.04	5	60	207,351	47, 48			Com. 47,48
57t i	n Regional Sl	orm.gpv	v		Return F	Period: 10 Y	/ear	Monday, A	ug 6, 2007

5

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SBUH Runoff	10.53	5	70	42,345		-		Basin A-1
2	SBUH Runoff	5,993	5	60	9,206		*******		5
з	Combine	15.16	5	60	51,551	1,2	dijine tra		Com. 1,2
4	SBUH Runoff	2.620	5	60	4,130		a20024		Basin 0-1
5	Combine	17.78	5	60	55,681	3, 4	ja mai Brann		Com. 3,4
6	SBUH Runoff	3.057	5	60	4,818				Basin 0-2
7	SBUH Runoff	0.857	5	70	3,664				Basin B-1
8	SBUH Runoff	2.250	5	70	10,383			*****	Basin B-2
9	SBUH Runoff	1.719	5	70	7,058				Basin B-3
10	Combine	4.825	5	70	21,105	7, 8, 9			Com, 7-9
11	SBUH Runoff	1.410	5	65	3,864				Basin C
12	SBUH Runoff	1.474	5	70	6,003		4-10-10-10-10-10-10-10-10-10-10-10-10-10-		Basin D
13	Combine	26.29	5	60	91,471	5, 6, 10, 11	, 12		Com. 5,6,10-12
14	SBUH Runoff	3.548	5	60	5,592				Basin 0-3
15	Combine	29.84	5	60	97, 063	13, 14			Com. 13,14
16	SBUH Runoff	2.947	5	60	4,646				Basin 0-4
17	SBUH Runoff	1.267	5	65	3,890				Basin E
18	SBUH Runoff	6.226	5	65	22,259				Basin F5
19	SBUH Runoff	8.970	5	70	40,395				Basin F4
20	Combine	15.18	5	70	62,654	18, 19			Com. 18,19
21	SBUH Runoff	6.227	5	70	24,397			4	Basin F3
2 2	Combine	21.41	5	70	87,051	20, 21			Com. 20,21
23	SBUH Runoff	7.648	5	60	15,745				Basin F2
24	SBUH Runoff	2.604	5	70	8,862				Basin F1
25	Combine	29.87	5	65	111,658	22, 23, 24			Com. 22-24
26	Combine	60.96	5	65	217,258	15, 16, 17,	25		Com. 15-17,25
27	SBUH Runoff	3.002	5	60	4,732		-		Basin 0-5
28	SBUH Runoff	3.002	5	60	4,732				Basin 0-6
29	Combine	65.87	5	60	226,722	26, 27, 28			Com. 26-28
30	SBUH Runoff	2.947	5	60	4,646		William State		Basin 0-7
31	SBUH Runoff	2.838	5	60	4,474		19-10-10-10-10-10-		Basin 0-8
32	Combine	71.65	5	60	235,842	29, 30, 31			Com. 29-31
33	SBUH Runoff	2.238	5	60	3,528				Basin 0-9
			<u> </u>						

Hyd. No.	Hydrograph typ o (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
34	SBUH Runoff	1.528	5	60	2,409			and the second sec	Basin 0-10
35	Combine	75.42	5	60	241,778	32, 33, 34			Com. 32-34
36	SBUH Runoff	2.511	5	60	3,958				Basin 0-11
37	SBUH Runoff	3.057	5	60	4,818				Basin 0-12
38	Combine	80.98	5	60	250,554	35, 36, 37			Com, 35-37
39	SBUH Runoff	3.057	5	60	4,818		is the second		Basin 0-13
40	SBUH Runoff	3.220	5	60	5,076				Basin 0-14
41	Combine	87.26	5	60	260,448	38, 39, 40			Com. 38-40
42	SBUH Runoff	2.674	5	60	4,216		Mind on		Basin 0-15
43	SBUH Runoff	2.183	5	60	3,441				Basin 0-16
44	Combine	9 2.12	5	60	268,106	41, 42, 43	ar an an air air agus		Com. 41-43
45	SBUH Runoff	2.402	5	60	3,786				Basin 0-17
46	SBUH Runoff	3.111	5	60	4,904				Basin 0-18
47	Combine	97.63	5	60	276,795	44, 45, 46			Com. 44-46
48	SBUH Runoff	0.819	5	60	1,291				Basin 0-19
49	Combine	98.45	5	60	278,086	47, 48			Com. 47,48
57t	n Regional St	torm.gpv	 v		Return F	Period: 25 Y	/ear	Monday, A	ug 6, 2007

7

Hydrograph Summary Report

Hydrafiow Hydrographs by Intelisolve v9.23

Hyd. No.	Hydrograph type (orlgin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SBUH Runoff	11.89	5	70	47,677				Basin A-1
2	SBUH Runoff	6.471	5	60	9,979		法定外销货制		5
3	Combine	16.92	5	60	57,655	1, 2	taj na takin tang		Com. 1,2
4	SBUH Runoff	2.830	5	60	4,477		ay atom fa jif		Basin 0-1
5	Combine	1 9 .75	5	60	62,132	3, 4			Com. 3,4
6	SBUH Runoff	3.301	5	60	5,223				Basin 0-2
7	SBUH Runoff	1.058	5	70	4,433				Basin B-1
8	SBUH Runoff	2.780	5	70	12,561				Basin B-2
9	SBUH Runoff	2.121	5	70	8,539				Basin B-3
10	Combine	5.959	5	70	25,533	7, 8, 9	5.000 m ⁻⁰		Com. 7-9
11	SBUH Runoff	1.678	5	65	4,533				Basin C
12	SBUH Runoff	1.748	5	70	7,041				Basin D
13	Combine	29.92	5	60	104,463	5, 6, 10, 1	, 12		Com. 5,6,10-12
14	SBUH Runoff	3.832	5	60	6,062				Basin 0-3
15	Combine	33.75	5	60	110,524	13, 14			Com. 13,14
16	SBUH Runoff	3.184	5	60	5,036				Basin 0-4
17	SBUH Runoff	1.510	5	65	4,563				Basin E
18	SBUH Runoff	7.169	5	65	25,403		a		Basin F5
19	SBUH Runoff	10.85	5	70	48,066				Basin F4
20	Combine	17.96	5	70	73,469	18, 19			Com. 18,19
21	SBUH Runoff	7.381	5	70	28,619				Basin F3
22	Combine	25.34	5	70	102,088	20, 21			Com. 20,21
23	SBUH Runoff	8.275	5	60	17,067			-	Basin F2
24	SBUH Runoff	3.082	5	70	10,396				Basin F1
25	Combine	34.87	5	65	129,551	22, 23, 24	ALL SHIELD PROPERTY.		Com. 22-24
26	Combine	70.21	5	65	249,675	15, 16, 17,	25		Com. 15-17,25
27	SBUH Runoff	3.243	5	60	5,129		menping occulture		Basin 0-5
28	SBUH Runoff	3.243	5	60	5,129				Basin 0-6
29	Combine	75.24	5	60	259,933	26, 27, 28			Com. 26-28
30	SBUH Runoff	3.184	5	60	5,036				Basin 0-7
31	SBUH Runoff	3.066	5	60	4,850				Basin 0-8
32	Combine	81.49	5	60	269,819	29, 30, 31			Com. 29-31
33	SBUH Runoff	2.417	5	60	3,824			-	Basin 0-9
5 74	n Regional St				Datura	Period: 50			.ug 6, 2007

Hyd. No.	Hydrograph type (orlgin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
34	SBUH Runoff	1.651	5	60	2,611				Basin 0-10
35	Combine	85.55	5	60	276,254	32, 33, 34	and provided the same		Com. 32-34
36	SBUH Runoff	2.712	5	60	4,290			*****	Basin 0-11
37	SBUH Runoff	3.301	5	60	5,223		and the second se		Basin 0-12
38	Combine	91.57	5	60	285,766	35, 36, 37		and the stands of	Com. 35-37
39	SBUH Runoff	3.301	5	60	5,223			server makes	Basin 0-13
40	SBUH Runoff	3.478	5	60	5,502			10 E. 9 - 10 - 11	Basin 0-14
41	Combine	98.35	5	60	296,491	38, 39, 40			Com. 38-40
42	SBUH Runoff	2.889	5	60	4,570				Basin 0-15
43	SBUH Runoff	2.358	5	60	3,730				Basin 0-16
44	Combine	103.60	5	60	304,791	41, 42, 43			Com. 41-43
45	SBUH Runoff	2.594	5	60	4,103				Basin 0-17
46	SBUH Runoff	3.360	5	60	5,316				Basin 0-18
47	Combine	109.55	5	60	314,211	44, 45, 46	-		Com. 44-46
48	SBUH Runoff	0.884	5	60	1,399				Basin 0-19
49	Combine	110.43	5	60	315,610	47, 48		Una refer links	Com. 47,48
57t	h Regional Si	orm.gpv	v V		Return F	Period: 50 \	/ear	Monday, A	ug 6, 2007

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
1	SBUH Runoff	13.32	5	65	53,106		as a scalader		Basin A-1
2	SBUH Runoff	6.948	5	60	10,752		and any second second		5
3	Combine	18.73	5	60	63,858	1, 2			Com. 1,2
4	SBUH Runoff	3.040	5	60	4,823	****	*****		Basin 0-1
5	Combine	21.76	5	60	68,682	3,4			Com. 3,4
6	SBUH Runoff	3,546	5	60	5,627				Basin 0-2
7	SBUH Runoff	1.263	5	70	5,251				Basin B-1
8	SBUH Runoff	3.323	5	70	14,878		*		Basin B-2
9	SBUH Runoff	2.531	5	70	10,113		· marveld for		Basin B-3
10	Combine	7.116	5	70	30,241	7, 8, 9			Com. 7-9
11	SBUH Runoff	1.959	5	6 5	5,231		an maarin di Ma		Basin C
12	SBUH Runoff	2.034	5	70	8,126				Basin D
13	Combine	33.63	5	60	. 117,908	5, 6, 10, 11	, 12		Com. 5,6,10-12
14	SBUH Runoff	4.116	5	60	6,532				Basin 0-3
15	Combine	37.74	5	60	124,440	13, 14			Com. 13,14
16	SBUH Runoff	3.419	5	60	5,426		A.B. 6 5010		Basin 0-4
17	SBUH Runoff	1.765	5	65	5,266				Basin E
18	SBUH Runoff	8.142	5	65	28,633				Basin F5
19	SBUH Runoff	12.83	5	70	56,144				Basin F4
20	Combine	20.88	5	70	84,777	18, 19			Com. 18,19
21	SBUH Runoff	8.589	5	70	33,028				Basin F3
22	Combine	29.47	5	70	117,805	20, 21			Com. 20,21
23	SBUH Runoff	8.902	5	60	18,389				Basin F2
24	SBUH Runoff	3.581	5	70	11,998		******		Basin F1
25	Combine	40.09	5	65	148,192	22, 23, 24			Com. 22-24
26	Combine	79.77	5	65	283,324	15, 16, 17,	25		Com. 15-17,25
27	SBUH Runoff	3.483	5	60	5,527				Basin 0-5
28	SBUH Runoff	3.483	5	60 ·	5,527				Basin 0-6
29	Combine	84.94	5	60	294,378	26, 27, 28			Com. 26-28
30	SBUH Runoff	3.419	5	60	5,426				Basin 0-7
31	SBUH Runoff	3.293	5	60	5,225				Basin 0-8
32	Combine	91.65	5	60	305,030	29, 30, 31			Com. 29-31
33	SBUH Runoff	2.5 96	5	60	4,120				Basin 0-9
	n Regional St					Period: 100		Monday, A	

Hydraflow Hydrographs by Intelisolve v9.23

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph description
34	SBUH Runoff	1.773	5	60	2,814				Basin 0-10
35	Combine	96.02	5	60	311,963	32, 33, 34			Com. 32-34
36	SBUH Runoff	2.913	5	60	4,622		730 AV -		Basin 0-11
37	SBUH Runoff	3.546	5	60	5,627		10.000 m		Basin 0-12
38	Combine	102.48	5	60	322,213	35, 36, 37			Com. 35-37
39	SBUH Runoff	3.546	5	60	5,627				Basin 0-13
40	SBUH Runoff	3.736	5	60	5,929	-	an a		Basin 0-14
41	Combine	109.76	5	60	333,769	38, 39, 40			Com. 38-40
42	SBUH Runoff	3.103	5	60	4,924				Basin 0-15
43	SBUH Runoff	2.533	5	60	4,020				Basin 0-16
44	Combine	115.39	5	60	342,713	41, 42, 43			Com. 41-43
45	SBUH Runoff	2.786	5	60	4,421				Basin 0-17
46	SBUH Runoff	3.609	5	60	5,728	-			Basin 0-18
47	Combine	121.79	5	60	352,862	44, 45, 46			Com. 44-46
48	SBUH Runoff	0.950	5	60	1,507				Basin 0-19
49	Combine	122.74	5	60	354,369	47, 48			Com. 47,48
57tt	n Regional Si	orm.gpw			Return F	Períod: 100	Year	Monday, A	ug 6, 2007

HYDRAULIC CALCULATIONS SUMMARY

DRAFT 57th Conveyance Capacity Analysis.doc

Hydraulic Analysis Summary 57th Ave. Conveyance System - 10-yr Regional Storm

	Line	Additional	Total	Full Flow	Volocitu	Pipe	Pipe	Invert Elev.	Invert Elev.	HGL	HGL	Rim Elev.	Rim Elev.
Pipe	Length	Flow	Flow	Capacity	Velocity	Size	Slope	Up	Dn	Up	Dn	Up	Dn
	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
P-1	120	0.1	8.0	87.1	3.7	30	4.51	2371.41	2366.00	2372.35	2367.43	2376.69	N/A
P-2	152	0.0	7.9	38.2	3.8	30	0.87	2372.73	2371.41	2373.67	2372.77	2378.05	2376.69
P-3	308	0.4	7.9	42.9	3.8	30	1.09	2376.12	2372.75	2377.06	2374.09	2381.40	2378.05
P-4	265	0.0	7.5	41.3	3.7	30	1.02	2378.82	2376.13	2379.74	2377.48	2384.12	2381.40
P-5	298	0.3	7.5	49.4	3.7	30	1.45	2383.13	2378.80	2384.05	2380.14	2388.45	2384.12
P-6	298	0.0	7.2	51.2	3.7	30	1.56	2387.80	2383.15	2388.70	2384.45	2393.13	2388.45
P-7	293	0.4	7.2	20.0	5.4	24	0.78	2390.64	2388.34	2391.59	2389.17	2395.41	2393 <u>.</u> 13
P-8	292	0.0	6.8	21.1	3.8	24	0.87	2393.18	2390.65	2394.10	2392.08	2397.96	2395.41
P-9	309	0.4	6.8	21.9	3.8	24	0.94	2396.05	2393.16	2396.97	2394.57	2400.95	2397.96
P-10	241	0.0	6.4	16.2	3.7	24	0.51	2397.27	2396.04	2398.17	2397.44	2403.20	2400.95
P-11	205	0.3	6.4	16.0	3.8	24	0.50	2398.33	2397.30	2399.23	2398.61	2403.60	2403.20
P-12	148	0.0	6,2	16.3	3.7	24	0.52	2399.08	2398.31	2399.96	2399.67	2403.73	2403.60
P-13	298	0.4	6,2	16.7	3.7	24	0.55	2400.68	2399.05	2401.56	2400.39	2405.37	2403.73
P-14	303	0.0	5.8	20.4	3.6	24	0.82	2403.17	2400.70	2404.02	2401.99	2407.86	2405.37
P-15	293	0.4	5.8	18.7	3.6	24	0.69	2405.15	2403.14	2406.00	2404.42	2409.87	2407.86
P-16	298	0.0	5.4	17.3	3.6	24	0.58	2406.94	2405.20	2407.76	2406.40	2411.63	2409.87
P-17	298	2.7	5.4	22.2	3.6	24	0.97	2409.84	2406.96	2410.66	2408.14	2414.54	2411.63
P-18	298	0.2	2.7	14.3	3.7	18	1.86	2415.91	2410.37	2416.53	2411.04	2420.12	2414.54
P-19	298	0.7	2.4	16.4	3.0	18	2.43	2423.17	2415.94	2423.77	2416.82	2427.91	2420.12
P-20	273	0.2	1.8	19.7	2.6	18	3.50	2432.81	2423.25	2433.32	2424.03	2437.07	2427.91
P-21	30	1.6	1.6	0.0	0.9	18	-1.00	2432.51	2432.81	2434.32	2434.31	2434.50	2437.07

Hydraulic Analysis Summary 57th Ave. Conveyance System - 50-yr Regional Storm

	Line	Additional	Total	Full Flow	Velocity	Pipe	Pipe	Invert Elev.	Invert Elev.	HGL	HGL	Rim Elev.	Rim Elev.
Pipe	Length	Flow	Flow	Capacity	velocity	Size	Slope	Up	Dn	Up	Dn	Up	Dn
	(ft)	(cfs)	(cfs)	(cfs)	(ft/s)	(in)	(%)	_(ft)	(ft)	(ft)	_(ft)	(<u>ft</u>)	(ft)
P-1	120	0.1	12.7	87.1	4.9	30	4.51	2371.41	2366.00	2372.60	2367.43	2376.69	N/A
P-2	152	0.0	12.6	38.2	4.4	30	0.87	2372.73	2371.41	2373.92	2373.23	2378.05	2376.69
P-3	308	0.5	12.6	42.9	4.4	30	1.09	2376.12	2372.75	2377.31	2374.55	2381.40	2378.05
P-4	265	0.0	12.2	41.3	4.3	30	1.02	2378.82	2376.13	2379.99	2377.94	2384.12	2381.40
P-5	298	0.4	12.2	49.4	4.3	30	1.45	2383.13	2378.80	2384.30	2380.59	2388.45	2384.12
P-6	298	0.0	11.7	51.2	4.3	30	1.56	2387.80	2383.15	2388.95	2384.90	2393.13	2388.45
P-7	293	0.5	11.7	20.0	6.0	24	0.78	2390.64	2388.34	2391.85	2389.53	2395.41	2393.13
P-8	292	0.0	11.2	21.1	4.7	24	0.87	2393.18	2390.65	2394.37	2392.65	2397.96	2395.41
P-9	309	0.5	11.2	21.9	4.7	24	0.94	2396.05	2393.16	2397.24	2395.12	2400.95	2397.96
P-10	241	0.0	10.7	16.2	4.3	24	0.51	2397.27	2396.04	2398.52	2397.99	2403.20	2400.95
P-11	205	0.3	10.7	16.0	4.7	24	0.50	2398.33	2397.30	2399.49	2398.98	2403.60	2403.20
P-12	148	0.0	10.4	16.3	4.0	24	0.52	2399.08	2398.31	2400.43	2400.20	2403.73	2403.60
P-13	298	0.5	10.4	16.7	4.8	24	0.55	2400.68	2399.05	2401.82	2400.61	2405.37	2403.73
P-14	303	0.0	9.9	20.4	4.4	24	0.82	2403.17	2400.70	2404.28	2402.52	2407.86	2405.37
P-15	293	0.5	9.9	18.7	4.4	24	0.69	2405.15	2403.14	2406.26	2404.95	2409.87	2407.86
P-16	298	0.0	9.4	17.3	4.3	24	0.58	2406.94	2405.20	2408.02	2406.93	2411.63	2409.87
P-17	298	5.2	9.4	22.2	4.3	24	0.97	2409.84	2406.96	2410.92	2408.66	2414.54	2411.63
P-18	298	0.3	4.2	14.3	3.7	18	1.86	2415.91	2410.37	2416.69	2411.56	2420.12	2414.54
P-19	298	1.3	3.9	16.4	3.5	18	2.43	2423.17	2415.94	2423.92	2417.12	2427.91	2420.12
P-20	273	0.2	2.6	19.7	2.9	18	3.50	2432.81	2423.25	2433.43	2424.32	2437.07	2427.91
P-21	30	2.4	2.4	0.0	1.4	18	-1.00	2432.51	2432.81	2434.33	2434.31	2434.50	2437.07

ATTACHMENT E

BUDGET-LEVEL COST ESTIMATES

Intentionally Left Blank

HAZEL'S CREEK SUB-BASIN PLANNING & SCHEMATIC DESIGN BUDGET-LEVEL COST ESTIMATE			PHASE 1 PUMPED BYPASS TO REGAL ST. STORMWATER MAIN			PHASE 2 GRAVITY ROUTE TO REGAL ST. STORMWATER MAIN VIA KXLY ANTENNA SITE			PHASE 3 STORMWATER FACILITIES AT KXLY ANTENNA SITE		
	NO. ITEMS OF WORK AND MATERIALS	UNIT	TOTAL ESTIMATED QUANTITY	UNIT PRICE	TOTAL	ESTIMATED QUANTITY	UNIT PRICE	TOTAL	ESTIMATED QUANTITY	UNIT PRICE	TOTAL
- 0	GENERAL ITEMS	Contraction of the second	and the second second		New Million				and the state of t		
- 1	1 General Conditions & Mobilization (10%)	LS	1	11,700 \$	11,700	1	56,400 \$	56,400	1	112,400 \$	112,40
	2 Erosion Control (1%)	LS	1	1,200 \$	1,200	1	5,600 \$	5,600	1	11,200 \$	11,20
	3 Construction Staking (2%)	LS	1	2,300 \$	2,300	1	11,300 \$	11,300	1	22,500 \$	22,50
-	CLEARING, GRUBBING & DEMO ITEMS	1			and the state	and the second second	1 Alter States	and the second second	Lan Star	and the second	
	4 Misc. Removals	LS	1	2,000 \$	2,000	1	4,000 \$	4,000	1	8,000 \$	8,00
	5 Clearing and Grubbing	ACRE	0	1,200 \$	-	1	1,200 \$	1,200	15	1,200 \$	18,00
	6 Demolish Lined Detention Pond	ACRE	1	5,000 \$	5,000	2	5,000 \$	10,000	10	5,000 \$	50,00
	GRADING & SURFACING									The second second	CLERCH CAL
1	7 Pond Excavation	CY	0	12.00 \$	-	6300	12.00 \$	75,600	17500	12.00 \$	210,000
Ĩ	8 Gravel Maintenance Road (6" Depth x 15' Width)	SY	0	8.00 S	-	700	8.00 \$	5,600	2500	8.00 \$	20,00
	9 Roadway Surfacing Restoration (3" ACP / 6" Base)	SY	440	27.00 \$	11,880	2210	27.00 \$	59,670	2440	27.00 \$	65,88
	DRAINAGE										
	10 Dainage Structure	EA	0	2,400 \$	-	9	2,400 \$	21,600	12	2,400 \$	28,80
Ť	11 Stormwater Lift Station Assembly, Complete (Incl. Control Valve, Redundancy)	EA	1	45,000 \$	45,000	0	45,000 \$		0	45,000 \$	-
- E	12 Drainage Pipe (< 24" Diameter)	LF	1000	50.00 S	50,000	800	50.00 \$	40,000	800	50.00 \$	40,00
1	13 Drainage Pipe (24" to 36" Diameter)	LF	0	80.00 S		2650	80.00. S	212,000	3000	80.00 \$	240,000
-1	14 Drainage Outfall Pads	EA	0	1.000 S		1	1.000 S	1,000	3	1,000 \$	3,00
ľ	15 Pond Maintenance Access Path	LS	D	2.000 \$	-	1	2,000 \$	2,000	3	2,000 \$	6,00
	16 Pond Liner	SY	0	12.00 S		9500	12.00 S	114,000	32000	12.00 S	384,00
	LANDSCAPING & IRRIGATION										
	17 Hydroseeding (Dry-Land Grass)	AC	2	1,500! \$	3,000	5.0	1,500; \$	7,500	10.0	1,500 \$	15,000
	18 Landscape Mulching around Ponds	SY	0	10.00 \$		500	10.00 \$	5,000	1500	10.00 \$	15,00
	19 Landscaping (Trees and Shrubs)	LS	0	0.00 \$	-	1	5,000.00 \$	5,000		20,000.00 \$	20,00
-	TOTAL STORMWATER FACILITY ITEMS		14000000	S			5		Section States	5	1,269,78
	SUBTOTAL CONTINGENCIES (20%)			s			\$	637,470 127,500		S S	1,269,78
	TOTAL CONSTRUCTION			\$			\$	765,000		\$	1,524,00
	DESIGN ENGINEERING (12%)			\$			\$	92,000		\$	183,00
1	CONSTRUCTION MANAGEMENT (6%)			\$	9,000		S	46,000		\$	91,00
	TOTAL ENGINEERING & CONSTRUCTION MANAGEMENT			\$	28,000		> \$	138,000		\$	274,00
	TOTAL STORMWATER FACILITY COST (Rounded)			Ś	186,000		s	903.000		s	1,798,00

ESTIMATE DOES NOT INCLUDE:

*KXLY/Spokane Radio Infrastructure Relocation onto KXLY Antenna Site *Implementation of Complimentary Site Uses/Amenities (Open Space, Non-Motorized Facilities, etc.) *KXLY Irrigation Pond *Backfilling 57th Pond to Level Site

ATTACHMENT F

COORDINATION MEETING NOTES

Intentionally Left Blank

MEETING NOTES

CLIENT: PROJECT: PROJECT NO.: CITY OF SPOKANE HAZEL'S CREEK BASIN PLANNING

: 426188

NEETING DATE	& TIME: August 24, 2011	9:30 a.m.		
Attendees:	Dale Arnold (City)	Stan Schwartz (Witherspoon Kelly)		
	Dave Black (NAI Black)	Leroy Eadie (City)		
	Mark Brower (CH2M HILL)	Jamie Hutchinson (NAI Black)		
	Doug Busko (CH2M HILL)	Greg Sweeney (TPM)		
	Teresa Brum (City)	Tim Anderson (KXLY)		
	Carrie Holtan (City)	Steve Herling (Morgan Murphy/KXLY)		
	Mike Edwards (City)	Teddie Gibbon (KXLY)		

FINAL MEETING NOTES - COORDINATION MEETING

INTRODUCTIONS

BACKGROUND

- Purpose and Objectives
 - M. Brower reviewed purpose and objectives of the CH2M Hill/City project with the group. Mark emphasized that input from the group is needed to ensure the project is successful and meaningful to the key stakeholders. The following input to the goals and objectives was provided:
 - Mike E. suggested that there should be an objective to optimize economic development such that the associated revenue generation benefits follow (fees, taxes, job creation, etc.)
 - Greg S. offered that there needs to be commitment from all parties within a 60 day timeline to commit to implementation of the stormwater solution, including coordination with Parks, Spokane County, KSPS as needed for the 4-way intersection, potential use of the South Side Sports Complex for 100-year overflow, etc.
 - See attached revised Purpose and Objectives
- Distributed Detention Concept Overview & Key Benefits
 - Mark B provided an overview of how the hybrid distributed detention concept would operate and leverage the 57th/55th Avenue Detention ponds and the KXLY Antenna Site for detention facilities and reviewed the key benefits (see attached).

COORDINATION

- Dale A. noted that there is commitment from his department to accomplish the preliminary design of the distributed detention system.
- Dave B. suggested that discussing the specifics of the stormwater system would not get us to the end goal. There needs to be collaboration and ownership of the key coordination issues. He added that the City has been good to work with for storm water solutions that may be needed in the interim, should the distributed detention system not be in place, and further, cost/availability of land will determine how his developments accommodate stormwater requirements.
- Dale A. suggested that the City favors ownership of the land that the detention pond facilities would occupy.
 - Steve Herling referred to a 2006 letter to the City that confirms KXLY's commitment to working with the City to accomplish the required land agreement.
 - Leroy E. suggested that sales of park lands are highly problematic and inquired to Stan S. as to whether it would be as difficult to swap lands, or dedicate permanent easements.
- Greg S. requested that the City provide a side-by-side comparison of the previous distributed stormwater concepts, including financial analysis with the current proposal.

MEETING NOTES

CLIENT: PROJECT: PROJECT NO.: CITY OF SPOKANE HAZEL'S CREEK BASIN PLANNING 426188

- o Stan S. referred to the December '07 IDEA Economic Analysis document produced by the City.
- Greg S. said that he's coordinated recently with Spokane County (Colleen Little) regarding the County transferring ownership of the 57th Ave. evaporation ponds, as well as commercial connecting properties to the existing storm drain mainline in 57th that discharge to the evaporation ponds. The County is very amenable to both proposals.
- Leroy E. said Parks would like to reconfigure the South Side Complex to gain another playfield; group
 consensus was that this was a good idea, and should be incorporated into any property transactions.

ACTION ITEMS

- Teresa Brum offered to collect action items from the group needed to make progress. Action items are summarized as follows:
 - Dave B. to provide a developer "Letter of Intent" to Teresa (for use with negotiations with Spokane County) regarding timing for development at 57th and Palouse.
 - Carrie H. will coordinate with Elizabeth Schoedel to spearhead discussions with Spokane County (Colleen Little) regarding joint agency agreements needed to modify the 55th/57th ponds.
 - Teresa B. will review the 2006 IDEA Economic Analysis, lead production of a comparable document for the current scenario, and apprise the Mayor of the effort and its results.
 - Dave B., Steve H. will collaborate and initiate the required Integrated Site Plan with Bernardo-Wills Architects.
 - Teresa B. and Mike E. will convene an internal City discussion on possible land exchange, including school district staff.
 - Mark B. will move forward with analysis to identify pond sizes and will report back with initial findings by the next meeting.
 - Teresa B. will coordinate with Jonathan Mallahan to facilitate presentations to the Southgate Neighborhood Council, September 14th and October 12th.
 - Dale A. will coordinate with work with City Planning (director) to investigate potential credits for utilizing Low Impact Development options, combining stormwater facilities with landscape requirements.
 - Elizabeth Schoedel, Carrie H. and Stan Schwartz will collaborate to develop a draft MOA for KXLY purchase/lease/trade.
 - The attendees at this meeting will reconvene in approximately 30 days (target: September 28th) to review progress and develop further action items.

FINAL HAZEL CREEK STORMWATER COORDINATION MEETING NOTES Wednesday, September 28, 2011 2:00 pm

Attendees: Dale Arnold (City) Mike Edwards (City) Gerry Gemmill (City) Teresa Brum (City) Elizabeth Schoedel (City) Bill Peacock (City) Rick Romero (City) Stan Schwartz (Witherspoon Kelly) Greg Sweeney (TPM) Teddie Gibbon (KXLY) Tim Anderson (KXLY) Jamie Hutchinson (NAI Black) Stephen Pohl (NAI Black) Doug Busko (CH2M Hill)

Presentation and Discussion:

The pond and pipe system as presented by Doug Busko and discussed by the task force will provide sufficient capacity to collect stormwater based on the identified vacant and underutilized parcels identified within the stormwater basin.

The soccer fields no longer are in play for storing the 100 year flood event, as the flood volume will be stored in a dedicated pond on the KXLY property.

A future step will be to determine the cost of the system as presented and discussed with a more traditional underground pipe system.

The system as presented could result in the reduction in footprint or removal of the 55th and 57th street ponds for future development. County must agree.

The development scenario focused on big box retail will likely make more sense financially to the City of Spokane than mixed-use and residential.

The developers are driving the need for a four-leg intersection at Palouse and Regal, but all see the value in reorganizing the idea of a 'center' as a project deliverable. The cost of the intersection will be part of the over-all project improvements.

The City needs to consider a wider range of benefits including direct, indirect and induced values for the City portion and county portion of the Hazel's Creek basin.

A regulation soccer field is 114 yards by 74 yards. CH2M HILL will work on locating a future playfield in the NE corner of the west KXLY parcel, directly adjacent to the sports complex.

Next Steps:

- Jamie Hutchison to work with Elizabeth Schoedel on a developer "Letter of Intent" (for use with negotiations with Spokane County) regarding timing for development at 57th and Palouse.
- Elizabeth Schoedel to spearhead discussions with Spokane County (Colleen Little) regarding joint agency agreements needed to modify the 55th/57th ponds.
- Rick Romero, Mike Edwards, Jamie Hutchinson, Stephen Pohl and Greg Sweeney will continue to review the 2006 IDEA Economic Analysis, and lead production of a comparable document for the current scenario. Doug Busko will coordinate information on undeveloped and redeveloped parcels. The meeting is set for Tuesday, October 4, 2011 at 2:00 pm.
- Doug Busko will modify layout to incorporate the expanded soccer fields.
- Bill Peacock will work with Spokane County to look at geotechnical issues, including seasonal groundwater levels.
- Peacock and Busko will coordinate with the Department of Ecology on the applicability of the State's Dam Safety rules to the project.
- Dave B. and Steve H. will collaborate with Bernardo-Wills Architects on the required Integrated Site Plan.
- Teresa Brum will convene internal City discussions on possible land exchange and four-leg intersection at Palouse and Regal. Kathy Ely of the school district will be invited to the discussions. KXLY will meet with Leroy Eadie on site.
- Teresa Brum will coordinate with Jonathan Mallahan to facilitate presentations to the Southgate Neighborhood Council on October 12th.
- Dale Arnold will coordinate with new City Planning director to investigate potential credits for utilizing Low Impact Development options, combining stormwater facilities with landscape requirements.
- Leroy Eadie to discuss with staff and draft a project priority list (parking, restrooms) in exchange for the Park property at the interchange (contingent on final Park Board approval).
- Elizabeth Schoedel and Stan Schwartz will collaborate to develop a draft MOA for KXLY purchase/lease/trade.
- Teresa Brum and Gerry Gemmill will apprise the Mayor of the effort and its results. Presentation at Mayor's Executive Team presentation October 20, 2011.
- The attendees at this meeting will reconvene in approximately 30 days (target November 2nd) to review progress and develop further action items.

Note: Southgate Neighborhood Council is October 12th.

FINAL HAZEL'S CREEK STORMWATER MEETING NOTES Wednesday, November 2, 2011 9:30 am

Attendees: Dale Arnold (City) Mike Edwards (City) Gary Bernardo (Bernardo Wills) Dave Black (NAI Black) Carrie Holtan (City) Jonathan Mallahan (City) Bill Peacock (City) Rick Romero (City) Mark Brower (CH2M HILL)

Stan Schwartz (Witherspoon Kelly) Greg Sweeney (TPM) Steve Herling (KXLY) Tim Anderson (KXLY) Jamie Hutchinson (NAI Black) Leroy Eadie (City) Stephen Pohl (NAI Black) Doug Busko (CH2M Hill)

Presentation and Discussion:

Dale said there are three property owners talking to the City about discharging to Hazel's Creek at 1.5 gpm/acre: 1) Prescott – apartments on 53rd east of Regal; 2) Traditions on Palouse Highway; 3) Prescott – former "Summer Walking" west of Traditions.

Dale also mentioned a proposal for all developers to pay the connection fee based on entire parcel area instead of just the developed area. Stan Schwartz suggested that the fee just be applied to the developed area.

Rick Romero presented the issues surrounding the cost of developing a regional stormwater facility, and potential areas of annexation. The original stormwater fee was to be \$5,600 per acre when the cost of constructing the Hazel's Creek improvements was \$5-\$6 million; the estimated cost is now \$7-\$8 million. The patchwork of parcels might conceivably hook into the Hazel's Creek drainage system will not generate enough revenue for construction, even with WWM shouldering 50% of the cost.

Rick laid out three tools that may be investigated and deployed to finance the capital project, in addition to developer fees and WWM funds.

- 1. A Tax Increment District may be leveraged, whereby the City would pledge a portion of the income to finance the project. Tax base would be established now when land prices are low, and finance based on incremental increases in the base.
- Strategic annexation would be necessary for a TIF, but most existing development immediately south of the current City limits is residential; therefore, the cost of services will outweigh the gained revenue. On top of that, the City would lose the utility premium they receive from these County properties. Rick

suggested that annexation efforts focus on the properties along 57th, including the evaporation ponds, as well as the commercial properties north of 57th. A suggestion was made that the value of the neighborhood amenities (pathways, stormwater/aesthetic ponds, etc.) be included in the financial calculations.

3. Implement the stormwater improvements in phases, to meet demand. Demand is currently focused east of Regal, North of 57th. Provide a system to meet this demand, initially, and plan for phased approaches for incorporating additional parcels within each drainage subarea.

Gary Bernardo stated that he has begun to look at the Integrated Site Plan (ISP), and is talking to Teresa and Tammy at the City.

Jonathan Mallahan suggested that the neighborhood connectivity plan is the source document for understanding how the neighborhood views the development projects in context with the connectivity vision.

There is a meeting scheduled with the vested parties to discuss the 4-leg intersection at Palouse Highway & Regal. Leroy mentioned that the Park Board can't approve easements longer than three years in duration, so perpetual access easement across South Side complex for the school district would have to be approved by the City Council, which might take six months. Leroy will confirm the desired soccer field size.

Next Steps:

- Gary Bernardo to work with developers to move forward on ISP effort.
- Stan Schwartz will draft an initial "letter of intent" to be available for review at the next group meeting.
- CH2M HILL to evaluate size and elevation of conveyance pipe from 57th, to 55th pond, to KXLY property.
- KXLY, Bernardo, Sweeney et al, and Brum to collaborate on bringing the ISP, the connectivity plan, and the community plaza plan together as a unified vision.

From:	Arnold, Dale
Sent:	Thursday, June 16, 2011 10:21 AM
To:	Arnold, Dale
Subject:	FW: Hazel's Creek Regional Stormwater Facilities
a na an sa	

Total evaporative pond system require 30 to 40 percent of a projects gross acreage. From our calculations, allowing a 1.5 gpm/acre discharge lessens land requirements. Approximately 6.2 percent of gross area is required with this allowance.

>A twenty (20) parcel would require 7 or 8 acres to accommodate the evaporation pond scenario.

>> Allowing 1.5 gpm/acre reduces that to approximately 1.25 to 1.5 acres.

The 1.5 gpm/ac requiring approximately 670 total gpm over the un/underdevelopment HC Basin. Accept 100 gpm of this at Hazels Creek leaving approximately 570 gpm for discharge at 37^{th} and Rebecca. This seems in line with preliminary geotechnical thinking and the 570 gpm could be handled through a 12" gravity sewer in existing easements.

ADDITIONAL Capital Costs & O/M for Hazel Creek Stormwater District

🚓 🗠 🗠 🛱

These fees are additional to the City's Current Residential and Commercial stormwater fees Specific to Hazels Creek Stormwater District and those parcels and developments directly connected to it.

Capital Costs \$4,700,000 Spread over 442 acres is a Connection Charge of \$11,300 with 50% Subsidized by Current SW Utility results in \$5650 per acre

Additional District O&M costs based \$50,000 per year Spread over 442 acres is \$10 a month or \$120 per year / Acre