Street Design Standards Update

Plan Commission Hearing
Sept 23, 2020
What are we doing? And Why?

• Update to Chapter 3 of the Design Standards

• Also updated to SMCs mostly Chapter 17

• Used by city staff and the development community

Balancing many interests and comments with the latest draft.
Schedule for Completion

06/24/2020 – Design Review Board
07/21/2020 – Plan Commission Transportation Subcommittee
07/22/2020 – Plan Commission workshop
07/30/2020 – Issue updated draft (version 10)
08/11/2020 – Plan Commission Transportation Subcommittee
08/12/2020 – Plan Commission workshop
08/24/2020 – Public Infrastructure, Environment, and Sustainability Committee
09/23/2020 - Plan Commission hearing
10/14/2020 – Plan Commission hearing (if continued)
Oct-Nov 2020 – City Council workshops and hearing
Street Characterization

Characterization = Classification + Context

- Classification
 - Principal, Minor, Major or Minor Collector, Local

- Context
 - Based on Land Use Zoning
Components of the Street

Added Transit Stops
Table 1: Street Dimensions

<table>
<thead>
<tr>
<th></th>
<th>Pedestrian Realm</th>
<th>Flexible Area</th>
<th>Vehicle Realm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sidewalk Zone</td>
<td>6</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Buffer Zone</td>
<td>4</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Curb Zone</td>
<td>0.5</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Opt. Shared Use Path</td>
<td>10</td>
<td>7</td>
<td>1-3</td>
</tr>
<tr>
<td>Stormwater Management</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>Parking</td>
<td>NA</td>
<td>NA</td>
<td>10</td>
</tr>
<tr>
<td>Bicycle Zone</td>
<td>6</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Bicycle Buffer</td>
<td>7</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Curb Extensions/ Bus Box</td>
<td>8</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Bicycle Outer Lane</td>
<td>8</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Bicycle Inner Lane</td>
<td>7</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Median</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

- **A.** In the case of tidal development, defend 30 units per zone on the street plan an optimal 3.5 foot minimum sidewalk. On street parking is required on one side of the street. See Table 4 (unilateral) for examples.
- **B.** Per SMC 20.03.050.4, a tree-planted continuous buffer regime is a minimum 6 foot minimum width for commercial zones. For residential and industrial zones, the minimum increases to 10 feet. Alternatively, a narrow buffer may be used to select if three widths are implemented.
- **C.** Buffers in commercial areas may be paved or concrete. When stormwater disposal is a governing concern, consideration should be given to use pervious surfaces.
- **D.** The flexible area is a menu of options which are chosen based on what makes most sense according to city plans, environmental responsibilities, and context. In some cases, none of these will fit within the project. Only in severe cases will more than one fit, for instance, a parking lane plus bike extension works.
- **E.** In places designated for shared-use paths, the path can take the place of the sidewalk zone.
- **F.** Consult Master Bicycle Plan for guidance on facility type and selection. Feasible facilities include bike lanes, buffered bike lanes, and parking protected bike lanes (cycle tracks). Bicycle facilities may operate in the flexible area or the vehicle lanes. Bicycle boulevards and shared roadways are possibilities on urban local access streets.
- **G.** Consult the Spokane Regional Steering Committee and Critical Washington Law Impact Development Guidance Manual for detailed locations for stormwater facilities. The stormwater management area must meet the required volume generated by the planned impervious area.
- **H.** Intersections and travel corridor crossings provide curb extensions into the parking lane.
- **I.** On roundabouts, see this buffer to space varies in size over the roundabout. This buffer should be designed only if there is a second lane for vehicles to continue ahead stopped traffic. This buffer should be designed only if there is a second lane for vehicles to continue ahead stopped traffic. This buffer should be designed only if there is a second lane for vehicles to continue ahead stopped traffic.
- **J.** High traffic and Midlevel traffic intersections on the Master Bicycle Plan should include bike lanes. Separation between bike lane and vehicle lane should be implemented via parallel side edge stripes with a periodic cross-aux.
- **K.** Where constraints are prevalent, consider 6-foot lane width as the minimum.
- **L.** Insert data includes the width of the gutter pan, if integral curb and gutter is used.

[Note: The image highlights the need for further discussion and revised dimensions, indicated by annotations on the table and diagram.]
Arterial ROW Widths - SMC 17H

Table 17H.010-1
Arterial Right-of-way Widths

<table>
<thead>
<tr>
<th>Right-of-way Width</th>
<th>Street Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum(^1)</td>
<td>Typical</td>
</tr>
<tr>
<td>Curb to Curb</td>
<td></td>
</tr>
</tbody>
</table>

ARTERIAL (all types)

<table>
<thead>
<tr>
<th>Lanes</th>
<th>Right-of-way Width</th>
<th>Street Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 lanes(^2)</td>
<td>60 ft</td>
<td>60 ft – 80 ft</td>
</tr>
<tr>
<td>3 lanes(^2)</td>
<td>65 ft</td>
<td>65 ft – 80 ft</td>
</tr>
<tr>
<td>4 lanes(^2)</td>
<td>75 ft</td>
<td>75 ft – 100 ft</td>
</tr>
<tr>
<td>5 lanes(^2)</td>
<td>90 ft</td>
<td>80 ft – 100 ft</td>
</tr>
<tr>
<td>6 lanes(^2)</td>
<td>100 ft</td>
<td>90 ft - 110 ft</td>
</tr>
<tr>
<td>7 lanes(^2)</td>
<td>100 ft</td>
<td>90 ft – 125 ft</td>
</tr>
</tbody>
</table>

Notes:

\(^1\)Additional right-of-way may be required if roadside swales are used to control storm drainage, for bike lanes if designated on the plan, or for wider sidewalks depending on the zoning.

\(^2\)Lanes can be through lanes, turn pockets, or continuous TWLTL.

\(^3\)Curb-to-curb width varies depending on street features including number of lanes, on-street parking, bike lane, median and turn lanes. See Design Standards for more detail.
Overly wide local streets

- Encourage narrower local streets to reduce development and maintenance costs.
- Small front yards
- No home access on this side
- No sidewalk buffer
- 40 feet

The City of Choice
Existing Streets at 32’ or less

46% of city streets are 32’ or less in width.
Local Street survey of other “snowbelt” cities

<table>
<thead>
<tr>
<th>City</th>
<th>Minimum Width for Parking on Both Sides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coeur d’Alene, ID</td>
<td>32’</td>
</tr>
<tr>
<td>Post Falls, ID</td>
<td>32’</td>
</tr>
<tr>
<td>Liberty Lake, WA</td>
<td>29’</td>
</tr>
<tr>
<td>Spokane Valley, WA</td>
<td>30’ above 200 ADT</td>
</tr>
<tr>
<td>Spokane County, WA</td>
<td>32’</td>
</tr>
<tr>
<td>Salt Lake City, UT</td>
<td>30’ in single-family zone, 36’ for multi-family</td>
</tr>
<tr>
<td>Madison, WI</td>
<td>32’</td>
</tr>
<tr>
<td>Denver, CO</td>
<td>32’</td>
</tr>
<tr>
<td>Provo, UT</td>
<td>30’</td>
</tr>
<tr>
<td>Tacoma, WA</td>
<td>28’</td>
</tr>
</tbody>
</table>

Notes: Street width research provided by City of Spokane Planning staff.
Residential standard street width

For use where on-street parking is less frequent due to street-facing garages and driveways.
Residential high density street width

For use where on-street parking, on both sides, is expected on a regular basis due to land use type or density.
Table 17H.010-2
Local Access Right-of-way and Street Widths

<table>
<thead>
<tr>
<th>LOCAL ACCESS</th>
<th>Minimum Right-of-way Width1</th>
<th>Minimum Street Width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sidewalks in ROW</td>
<td>Sidewalks on Easements</td>
</tr>
<tr>
<td>Commercial / Industrial</td>
<td>60 ft.</td>
<td>50 ft.</td>
</tr>
<tr>
<td>Residential High Density2</td>
<td>60 ft.</td>
<td>50 ft.</td>
</tr>
<tr>
<td>Residential Standard3</td>
<td>56 ft.</td>
<td>46 ft.</td>
</tr>
<tr>
<td>Residential One-side Parking4</td>
<td>51 ft.</td>
<td>41 ft.</td>
</tr>
<tr>
<td>Hillside Development4,5</td>
<td>40 ft.</td>
<td>35 ft.</td>
</tr>
<tr>
<td>Cul-de-sac (radius)</td>
<td>56 ft.</td>
<td>51 ft.</td>
</tr>
<tr>
<td>Alley6</td>
<td>20 ft.</td>
<td>20 ft.</td>
</tr>
</tbody>
</table>

Notes:

1. Additional right-of-way may be required if roadside swales are used to control storm drainage.
2. Appropriate in areas where parking on both sides of the street is expected on a regular basis, such as apartment complexes. Refer to SMC 17H.010.070 for more information.
3. Appropriate in areas where homes have street-facing garages and driveways for parking. On-street parking is used by visitors and extra vehicles. Refer to SMC 17H.010.070 for more information.
4. Parking is allowed on one side of the street only. Refer to SMC 17H.010.120 for on-street parking requirements.
5. Refer to SMC 17H.010.110 for more information.
6. Alleys do not require sidewalk or curb. The widths shown apply to right-of-way and pavement width.
Diagonal Ramps are NOT ideal

At diagonal curb ramps, wheelchair users cross in different location than other pedestrians.

With 2 separate ramps pedestrians cross at the same location.
Curb Ramps – example

• Historic rock walls
• Narrow adjacent sidewalk
• Right-of-way constraints
• Stormwater system
Curb Ramps – Design Standards

In all new construction and reconstruction projects placement of two ADA compliant curb ramps per corner is required. Ramps should be aligned such that the running slope (and edge of curb if used) is parallel to the crosswalk markings and direction of pedestrian travel.

For retrofit or preservation work the priority is to use two curb ramps per corner. However, the use of single curb ramps per corner may be appropriate when relocation of utilities would be required to accommodate dual ramps, topographic constraints, right-of-way constraints or intersections with small curb radii.
Curb Ramps – SMC edits

17H.010.200 Curb Ramps

B. Not less than two curb ramps per lineal block shall be constructed on or near the crosswalks at intersections or other convenient locations approved by the director of engineering services. **Two curb ramps are required on each corner unless utilities, topography, right-of-way or other existing conditions make two ramps infeasible.**

Revised language
Design and Control Vehicles

Control Vehicles

Design Vehicle
"Accommodate"

Design Vehicle
"Design For"

Image: City of Seattle

30'

20'

The City of Choice
Design Speeds

<table>
<thead>
<tr>
<th>Street Type</th>
<th>RESIDENTIAL, INDUSTRIAL, CB AND GC</th>
<th>CC, DOWNTOWN, FORM BASED CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Principal Arterial</td>
<td>Minor Arterial</td>
</tr>
</tbody>
</table>

Modified to include 20 mph zones
Clear Zone

- Current policy is 10’ from travelled way
- New policy based on speed
 - 20-35 mph: 1.5’ for existing objects, 4’ for new
 - 40+ mph: 6’ for existing objects, 10’ for new
- Exemptions include signals, lighting, parking meters, ITS equipment.
- Traffic signs, fire hydrants, residential mailboxes must be a breakaway/frangible.
- Exempts planter boxes, bike racks transit shelters, other street furniture but desired placement is 1.5’ from face of curb.
- Planters used in the street must be fixed in place or a frangible design
Place-making Language

- Artwork
- Landscaping
- Historic sidewalk patterns
- Decorative tree grates and manhole covers
- Pedestrian lighting
- Interpretive features
- Scenic overlooks
SMC Updates

17A.010.070 Delegation of Administration (downloaded here)
 Removed due to planned update

17A.020 Definitions (downloaded here)

17C.200 Street Tree Requirements, 12.01 and 12.02 (downloaded here)

17H.010 Engineering Standards (downloaded here)
 Several additional changes to match street standards
Schedule for Completion

06/24/2020 – Design Review Board
07/21/2020 – Plan Commission Transportation Subcommittee
07/22/2020 – Plan Commission workshop
07/30/2020 – Issue updated draft (version 10)
08/11/2020 – Plan Commission Transportation Subcommittee
08/12/2020 – Plan Commission workshop
08/24/2020 – Public Infrastructure, Environment, and Sustainability Committee
09/23/2020 - Plan Commission hearing
10/14/2020 – Plan Commission hearing (if continued)
Oct-Nov 2020 – City Council workshops and hearing
• Other slides if needed