Welcome to Avista’s Upper Falls Hydroelectric Development. Upper Falls is part of Avista’s Spokane River Project, which consists of five hydroelectric developments between Coeur d’Alene Lake in Idaho and Long Lake Dam in Washington (Post Falls, Upper Falls, Monroe Street, Nine Mile, and Long Lake). The Spokane River Project is licensed by the Federal Energy Regulatory Commission as Project No. 2545.

The Upper Falls Hydroelectric Development was completed in 1922 and consists of three major structures. About ¾ mile upriver from here, a 300-foot-long Diversion Dam on the north channel of the Spokane River directs water into the south channel. Water in the south channel flows to the Upper Falls Intake, and then drops through an underground pipe (penstock) to the Upper Falls Powerhouse, located to your right. The hydro development generates up to 10 megawatts of electricity, enough to power about 7,500 homes.

For more information on this or other Avista generating facilities, contact:

Avista
1411 East Mission Avenue
P.O. Box 3727
Spokane, WA 99220-3727
(800) 727-9170
www.avistacorp.com

Riverfront Park is owned by the City of Spokane and open to all members of the public without discrimination. The park offers visitors scenic views of the river and numerous recreational opportunities including open-air concerts, the IMAX Theatre, an antique carousel, and open space within the city’s central business district.

For your personal safety and enjoyment of this area, please:
- Do not enter fenced areas.
- Dispose of litter properly.
- Obey all signs.

CAUTION: For public safety, City ordinance prohibits boating and swimming in the section of the river between the Division and Monroe Street Bridges.
The riverfront near Spokane Falls has been used for many purposes since Euro-Americans settled here in the 1870s. Reflecting the values and technologies of their times, people have used the area as a source of energy, a transportation and industrial center, and a scenic, residential, and recreational resource.

In the 1870s and '80s, the force of water flowing through this area was used to power sawmills and flour mills along the banks of the river. During this period Norman Henry Wilson, for whom the largest island is named, and James Oliver purchased most of what is now Riverfront Park. With industrialization came rail yards and depots that made Riverfront Island, and what became Spokane Falls Boulevard, a transportation hub for the growing community. Beginning with the arrival of the Northern Pacific Railway in 1881, railroads were a major part of this area. The clock tower on the island was originally part of the Great Northern Railroad's Spokane depot.

Before the area's early demand for electricity, hydroelectric facilities were built at Spokane Falls. The Diversion Dam located in front of you was completed in 1932 and is part of Avista's Upper Falls Hydroelectric Development. The 260-foot long, 32-foot high dam helps regulate the flow of water through the south channel of the Spokane River and into the Upper Falls Intake to the Upper Falls Powerhouse.

In spite of the area's industrial climate during the 1900s, people began to recognize that the riverfront had potential to become a valuable recreation and entertainment resource. Development Spokane needed urban renewal and a revitalized riverfront would play a key role. Railroad tracks were removed and new structures were constructed for the 1974 World's Fair. The fair had over 8 million visitors and was named "Celebrating Emmons's Fresh New Environment." In 1978, President Jimmy Carter formally dedicated the World's Fair land as Riverfront Park.
One day Coyote was enjoying himself going up along the banks of the Spokane River. He gazed across the river and saw a local tribe getting ready to fish for salmon for the winter – the local tribe really enjoyed the fish and they had lots of it.

All at once Coyote stopped. There he saw a beautiful Indian woman from this tribe. In his eyes she was the most beautiful woman in the world and he knew right then and there he had to have her.

Coyote began the task of getting rice, blankets and other things that were important to him to give to the Chief of the tribe in exchange for the privilege of having the woman, who turned out was the Chief's daughter. The Chief turned Coyote down, insisting he had a Coyote mark his daughter. Coyote left mad, but when he saw the woman again he just knew he had to have her. So he approached her but she got scared and ran away from him. "Well, if the Chief wants more he'll get more," Coyote said to himself.

So he began the task of getting rice, blankets, and other things that were important to him to give to the Chief. The Chief told him to act like he had a Coyote and to marry his daughter – and pointed out to him that it is impossible for Coyote to marry a human. Coyote warned the Chief that if he couldn't marry the woman, he would not let his special powers to part the Chief and his people forever. Then he looked around and noticed how plentiful the fish were so he threatened to ruin the water and the fish. The Chief didn't believe it and simply dismissed Coyote and everything he had to say.

Coyote got to the animal spirits for special powers. The animal spirits told him that if he was to grant something that he wanted it would get hard. The clever trickster coyote convinced the animal spirits that he really wanted to save the people. The animal spirits granted him the power to move the water – until it didn't seem possible that anyone could get him by some really getting moved. But Coyote took his special powers and moved a huge rock into the Spokane River, creating Spokane Falls, which blocked the flow of the salmon from reaching the tribe upstream.

Then Coyote asked the other tribes to come down with the help to get the woman, but he was refused by them. After that he went down to the tribes along the Spokane River, so he put rocks all the way down the river to where it prevents how the Coeur d'Alene River.

From that time the salmon went from the Spokane River and all its tribes forever.

The salmon went, and Spokane Falls, formed due to current of water and was eventually moved to some place on the rock and is still there today, a place of great tradition.

Important dates:
1872 - Second Canoe Idaho entering through boundaries due to the Coeur d'Alene River.
1881 - Upper Spokane Falls, the mouth of the Upper Spokane Falls, a place that was once a place of great importance to the Native American people.
1917 - Spokane Falls, an important location, located by the Spokane and Coeur d'Alene Rivers.
1976 - The Coeur d'Alene Tribe and the Spokane Indian Tribe continue to exist, having their ancestors 7,000 years ago.
Spokane’s Need for More Power

As the demand for electricity grew, so did the hydroelectric development at Spokane Falls. Completed in 1922, the Upper Falls Hydroelectric Development was instrumental in meeting the needs of the Spokane’s expanding industries.

Avista, formerly known as the Washington Water Power Company, had recognized the potential of the upper falls early on and acquired the falls in 1906. Two decades later, the increased demand for electricity prompted development here. The Upper Falls Powerhouse, located to your left, generates electricity from the force of falling water. The falling water spins the plant’s turbine, which in turn drives the generator to produce electricity.

Electricity from the Upper Falls Powerhouse and the Monroe Street Powerhouse (and a short distance downstream) is transmitted through large underground cables to the nearby Post Street Substation. The two power plants supply electricity to Spokane’s central business district. Because the electricity is generated and used locally, Spokane’s homes and businesses remain unaffected by regional power outages.

When it was built, the Upper Falls Powerhouse represented state-of-the-art technology because it was remotely operated from a control room in the Post Street Substation. Controlling a powerhouse in an urban area from a remote location was a significant step in the operation of power plants.

1914 - Aransas Hot Springs Dam and powerhouse completion
1920 - Washington Falls Dam and powerhouse completion
1922 - Monroe Street Powerhouse and powerhouse completion
1923 - Post Street Substation construction
1929 - Centennial Powerhouse completed

The efficient use of the upper falls water power for electricity generation remained a constant until 1970. The 1970s saw the installation of a new powerhouse, which is located near the falls.

The powerhouse is one of the few remaining examples of a hydroelectric power plant in the state. It continues to supply electricity to the community today.
Spokane was at the forefront of developing the benefits of hydropower by first generating electricity along the river in 1885. Within three years, 24-hour electric service was available and its reach was expanding. Spokane's role in supplying electricity to the region had begun.

Electricity was a new and exciting technology and many entrepreneurs recognized its potential. In 1891 the Washington Water Power Company was created, and in 1890 it built the Monore Street Dam and Powerhouse here at the "Lower Falls." This site held the greatest potential for producing electricity in Spokane and its development marks the beginning of the era for the smaller power plants along the river.

Because of its proximity, this site has generated electricity longer than any other hydroelectric development in Washington state. In 1912 the original timber crib, elevated dam both near the top of the lower waterfall was replaced with a concrete dam. The dam diverts some of the river water into a large pipe, called a penstock, which is located beneath this walkway. Water flows through the penstock to the powerhouse, where it is used to generate electricity and then returned to the river. The underground powerhouse replaced the original powerhouse in 1992.

Early use for electricity was limited but grew steadily. In addition to lights and structures, other electric devices were introduced. In the early 1900s, electric cooking ranges, water heaters and motors became readily available. Electrical service spread to many communities were connected to Spokane's power. In 1903, a 100-mile long transmission line was completed between Spokane and the Coeur d'Alene mines, at the time it was the longest transmission line in the world.

Electricity from the Monore Street Powerhouse and the Upper Falls Powerhouse (separated by a short distance upstream) is transmitted through long underground cables to the Washington Water Power Post Street Substation, which is located near the top of the valley. The two power plants supply electricity to Spokane's business district.
A Natural Place to
Produce Electricity

WASHINGTON WATER POWER

Upper Falls Intake

For centuries, people have used the energy of falling water to turn waterwheels and power nearby machines. In the 1880s, falling water became a source to generate a new form of power that could be easily transported away from the river—electricity.

Called the City of Spokane Falls until 1993, Spokane's first industries were built along this waterfront. Spokane Falls was recognized early on as a source of energy to spin turbines and generate power. Here, as elsewhere in the Northwest at that time, hydroelectric power and development went hand in hand. In the mid-1800s, the cascading, rapid drop in river elevation at Spokane Falls was a natural source of power to generate electricity in the Upper Falls and Monroe Street Hydropower Developments. The Upper Falls Intake in front of you funnels water into an 18-foot-wide underground pipe, or tunnel.

The water flows 350 feet through the penstock to the Upper Falls Powerhouse, where it spins a turbine that powers an electric generator. The water then returns to the river, where some of it drops through another penstock and generates additional electricity at the Monroe Street Powerhouse, located at the base of the lower falls.

The Post Street Substation, which sits west of the Upper Falls Intake, distributes electricity generated by the powerhouse to the city grid. The substation building was originally used to shelter and service electric transformers and operate street lighting. Batteries inside the building were charged with electricity generated at night and used to supplement the electricity required to run the incandescent system during the day. City streetlights were powered and controlled from the building, where operators would manually switch lights on and off.

Electric trolleys were a popular means of moving by beginning in the 1890s. Spokane's first electric trolley began service in 1890, after the city's electric power of 1889 provided the power for the trolley.