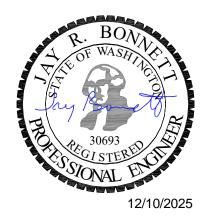


J.R. BONNETT ENGINEERING

IVIL & STRUCTURAL ENGINEERING/CONSULTING 803 E. 3RD AVENUE SPOKANE, WA. 99202 (509) 534-3929

EAGLE BLUFF, P.U.D.


Spokane, WA

Conceptual Drainage Design Calculations

for

Harley C. Douglass

5520 N. Florida Street Spokane, WA 99217

December, 2025 JRBE Job No. 24-004.10

EAGLE BLUFF, P.U.D.

Conceptual Storm Water Management Narrative

PROJECT DESCRIPTION

The development site is located along the south boundary of the City of Spokane on the west side of US-195 and is directly east of the existing Eagle Ridge P.U.D and Eagle Ridge First Addition, P.U.D.

There are currently 11 parcels of land totaling approximately 106.59 acres that will be platted into a mixture of single-family and multi-family lots. The proposed project anticipates the construction of approximately 331 single-family homes and 33 four-unit buildings housing a total of 128 multi-family units.

The main access points to the development are located at the north end where the existing Meadow Lane Road improvements currently terminate and at the south end where the existing Moran View Street improvements currently terminate.

Lots within the development are generally arranged in a grid pattern that are well-connected by public streets and sidewalks. For the most part, the single-family lots will be developed in a manner that is consistent with single-family developments in the area. Each lot will consist of a wood-framed home with an attached garage served by a private driveway extending from the street. Exterior decks and/or patios will likely be constructed in the rear yard while covered porches and private sidewalks will connect the home to the adjacent public sidewalk or private driveway. The remainder of the lot will consist of typical residential-type landscaping, including grass lawn, shrubs, trees, and planting beds.

The proposed public streets will be asphalt-paved with concrete curb & gutter, planting strips and concrete sidewalk located on each side per City standards.

PURPOSE

This report has been prepared to conceptually describe, illustrate and summarize the extent of storm water drainage facilities required to safely collect, convey and dispose of the proposed project storm water runoff from a 10-year design frequency storm event in accordance with the Spokane Regional Storm Water Manual and best management practices. The overall stormwater system will consist of repetitive drainage facilities strategically placed around the site to contain anticipated storm events. It is anticipated that 100% of the post-developed runoff from within the right-of-way and a major portion of the improved lots will be contained and disposed of onsite. Not all drainage basins and related facilities will be quantified in this report, rather representative basins will be illustrated and quantified to reflect the type of systems that will be repeated around the development. A final drainage report and construction drawings that will illustrate and quantify all onsite drainage basins will be prepared for the overall development upon preliminary plat approval.

GEOTECHNICAL INFORMATION

The NRCS Soil Survey identifies three onsite soil types described as: 1) Brincken, moist-Speigle complex, 8 to 25 percent slopes; 2) Speigle-Rubble land-Rock outcrop complex, 30 to 90 percent slopes; 3) Hagen ashy sandy loam, 3 to 8 percent slopes.

The attached Geotechnical Engineering Report prepared by Inland Empire Geotech, LLC has identified three subsurface geologic conditions consisting of: 1) glacial flood deposits, predominantly sand (Qfs) described as medium-fine to coarse-grained sand and granules with sparse pebbles, cobbles, and boulders; 2) Glacial flood deposits predominantly gravel (Qfg) described as thick-bedded to massive mixture of boulders, cobbles, pebbles, granules, and sand. 3) Glacial lake and glacial flood deposits, undifferentiated (Qglf) described as fine-grained, massive, and thin-bedded lake deposits of sand and silt interbedded with irregularly distributed glacial-flood sand and gravel.

With the exception of the lower area at the north end of the site, stormwater disposal facilities will be placed in areas of significant fill. The fill soils will be imported and will consist of course-grained sand and gravels that will facilitate optimum infiltration capabilities.

The geotechnical evaluation prepared by Inland Empire Geotech, LLC found that subsurface soils varied across the sight and generally included natural sand and silts from glacial deposits and decomposed bedrock consisting of layers of sandstone and basalt deposits. Therefore, it is recommended that the stormwater facilities design should be calculated using equation 6-1D from Chapter 6 of the Spokane Regional Stormwater Manual.

PRE-DEVELOPMENT BASIN INFORMATION

While, there are multiple pre-developed drainage basin across the site, they all generally slope down from west to east. Predeveloped stormwater runoff (if any) would flow offsite to the adjacent properties along the east side of the plat. The survey data suggests that there are multiple locations where the runoff would cross the east boundary as concentrate flows rather than sheet flows.

POST-DEVELOPMENT BASIN INFORMATION

Onsite grading and roadway construction across of the development will produce multiple post-developed drainage basins. In general, each drainage basins will consist of paved roadways that will collect and convey stormwater generated within the right-of-way and front portion of developed lots to conventional grassy drainage ponds/swales where the water will be treated and discharged into the subsurface soil through drywells or subsurface galleries.

This conceptual report demonstrates the methodology used and quantifies the runoff flows and volumes of a typical post-developed drainage basin generated by a 10-year design frequency storm. The representative basin has been selected because it contains the largest impervious areas and will generate the most runoff compared to the other basins. All the other basins will be analyzed and design in a similar fashion. All ponds will be sized accordingly, based on the tributary runoff flows.

The representative Basin consists of multiple subbasins that contain impervious roadways, sidewalks, driveways, rooftops, and landscaping. The following is a breakdown of the sub-basin tributary drainage areas:

Sub-basins 5-1A and 5-1B draining to Pond 5-1.

- All pervious and impervious areas within the north half of the 71st Avenue right-of-way.
- All pervious and impervious areas of the developed front portions of the lots along the north half of 71st Avenue. This area includes driveways, rooftops and landscaping that slope towards the street.

Sub-basins 5-2A and 5-2B draining to Pond 5-2.

- Rear yards of the existing offsite developed properties within Eagle Ridge First Addition located to the west of Eagle Bluff.
- All pervious and impervious areas of the developed lots located west of Division Street.
- All pervious and impervious areas within the Division Street right-of-way between 70th Avenue and 71st Avenue.
- All pervious and impervious areas within the south half of the 70th Avenue right-of-way.
- All pervious and impervious areas of the developed front and rear portions of the lots along the south half of 70th Avenue. This area includes driveways, rooftops and landscaping that slope towards the street.

Sub-basin 5-3A draining to Pond 5-3.

- All pervious and impervious areas within the west half of the Spokane Street right-of-way.

Sub-basin 5-4(1), 5-4(2) and 5-4(3) draining to Pond 5-4.

- All pervious and impervious areas of the developed front portions of the lots along the east half of the Spokane Street right-of-way. This area includes driveways, rooftops and landscaping that slope towards the street. The rear roofs and yards will runoff away from the street to the east.

The following table summarizes the pervious and impervious areas for each drainage sub-basin and the pollutant-generating impervious surfaces.

Table No. 2 – Pollutant-Generating Impervious Surface Summary Table

Sub- Basin	Total Basin Area (sf)	PGIS Pavement Area (sf)	PGIS Concrete Area (sf)	PGIS Roof Area (sf)	Non-PGIS Roofs & Landscape Area (sf)	Total PGIS Area (sf)
'5-1A & 5-1B'	65,419	14,595	8,820	14,000	28,004	37,415
'5-2A & 5-2B'	250,789	26,071	12,600	20,000	192,118	58,671
'5-3A'	8,210	4,972	985	0	2,253	5,957
'5-4A & 5-4B'	21,750	5,507	4,139	5,000	7,104	14,646

CRITICAL AREAS

This project lies within the Critical Aquifer Recharge Area (CARA) or Aquifer Sensitive Area (ASA), which requires stormwater runoff from pollutant-generating impervious surfaces (PGIS), such as asphalt pavement, to be pre-treated prior to subsurface discharge.

DOWN-GRADIENT ANALYSIS

All stormwater runoff generated by the proposed project will be directed to onsite swales and discharged into subsurface soils except for the rear yards along the eastern plat boundary where the runoff will flow off site. The onsite soils are assumed to be adequate for subsurface disposal based on known soil profiles. The project will not have any down-gradient adverse impacts.

METHODOLOGY

The proposed swales have been sized to accommodate a 10-year design frequency storm event using the Rational Method and Bowstring Method. The times of concentration and rainfall intensities were determined using Table 5-6 and Table 5-7 of the Spokane Regional Stormwater Manual.

WATER QUALITY TREATMENT

Stormwater runoff from all post-developed basins will be directed to grassy bio-infiltration swales for the removal/treatment of Total Suspended Solids, Total Petroleum Hydrocarbons, Metals, and Phosphorous per the requirements of the Spokane Regional Stormwater Manual.

RESULTS

Per the Geotechnical Engineering Report prepared by Inland Empire Geotech, LLC, the proposed

bio-infiltration swales have been sized using the 1133 method to treat the tributary stormwater runoff per the attached table. An infiltration rate of 0.3 cfs for Type '1' drywells and 1.0 cfs for Type '2' drywells has been assumed for the purposes of these calculations assuming the soils are similar to those identified in the attached USGS soils survey maps.

Table No. 3 – Treatment and Storage Summary Table

Basin	Treatment Volume Required (cf)	Treatment Volume Provided (cf)	10-yr Storage Vol. Required (cf)	10-yr Storage Vol. Provided (cf)
'5-1A & 5-1B'	973	2179	1618	4577
'5-2A & 5-2B'	1526	2051	4149	4313
'5-3A'	155	237	64	769
'5-4A'	381	200	2010	671

Note, the roadside swales 5-4(1), 5-4(2) and 5-4(3) within sub-basin 5-4 do not have the capacity to contain the necessary treatment and storage volumes. As such, carryover volumes (the difference between volume required and volume provided) will be conveyed downstream to a larger drainage pond in Phase IV where it will be contained and discharged in to drywells. The final drainage design will account for all carryover volumes tributary to the pond.

OPERATIONAL CHARACTERISTICS

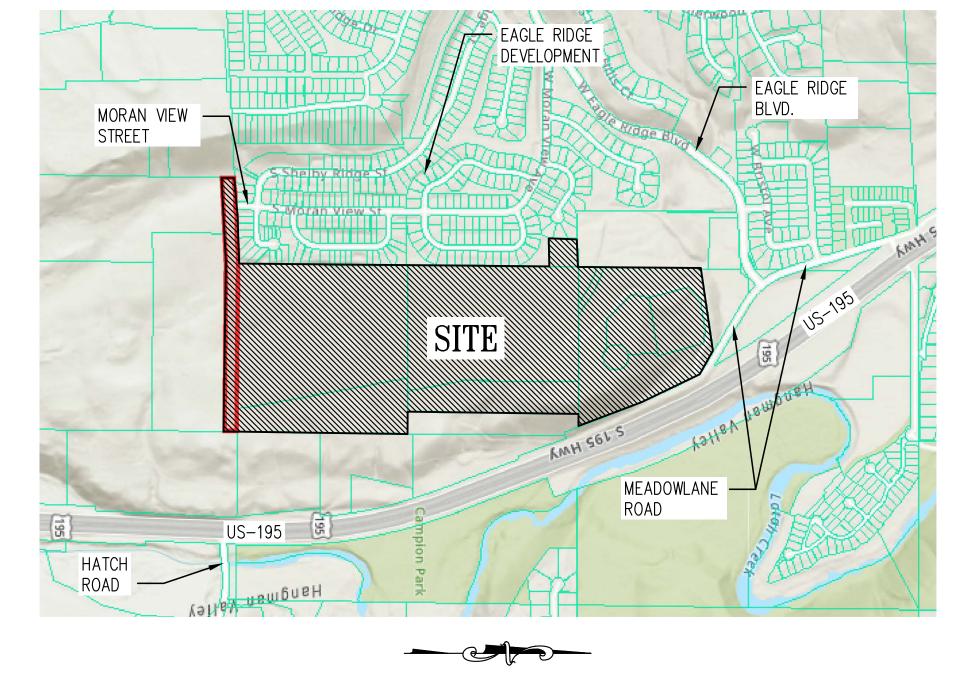
The operational characteristics for this project are simple and straight forward. Storm water runoff will flow across the paved surfaces to the grassy swales. The runoff will then fill the grassy swale up to the drywell rim and overflow into the drywell, where it will infiltrate into the subsurface soils.

CONCLUSION

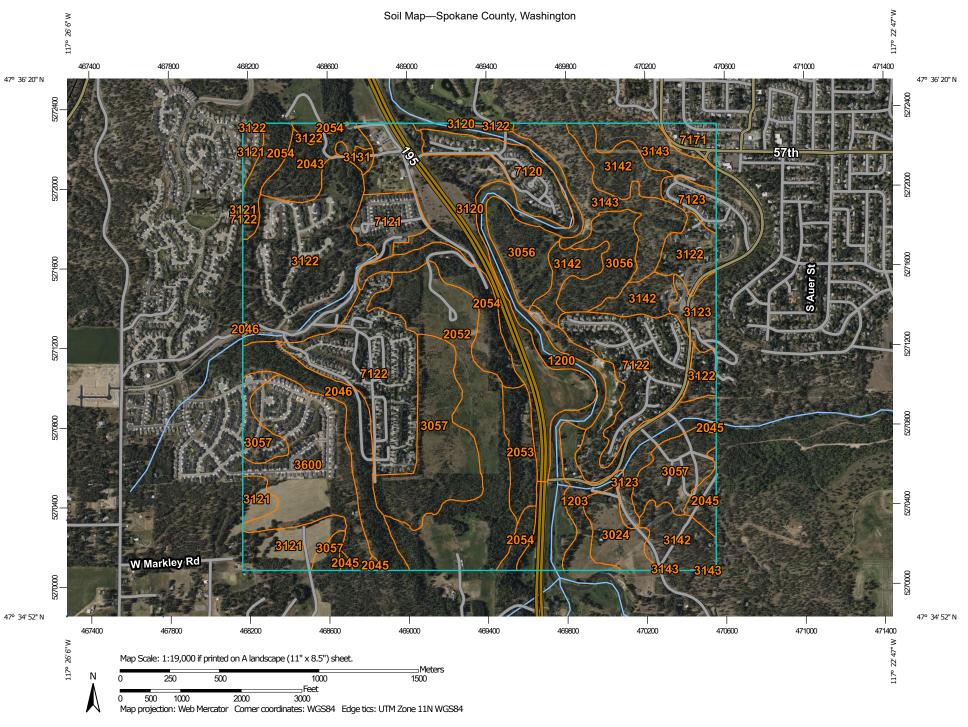
As demonstrated by this report, the proposed storm water facilities will adequately pre-treat and dispose of the generated storm water runoff from a 10-year 24-hour storm event for the proposed onsite improvements.

APPENDIX

MAPS


Vicinity Map Soils Map Pre-Developed Topography Map PP2.0 - Overall Conceptual Drainage Plan PP2.1 - Partial Conceptual Drainage Plan - Basin 5

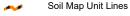
DRAINAGE CALCULATIONS


10-Year, 24-Hour Bowstring Method Analysis

GEOTECHNICAL EVALUATION

MAPS

VICINITY MAP


MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

 \boxtimes Borrow Pit

36 Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

â Stony Spot

0 Very Stony Spot

Spoil Area

Wet Spot Other

Special Line Features

Water Features

Δ

Streams and Canals

Transportation

Rails ---

Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Spokane County, Washington Survey Area Data: Version 16, Aug 26, 2024

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: May 9, 2022—Aug 15, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
1200	Endoaquolls and Fluvaquents, 0 to 3 percent slopes	68.9	5.2%
1203	Haploxerolls ashy silt loam, channeled, 0 to 8 percent slopes	22.1	1.7%
2043	Klickson-Speigle complex, mass wasted, 15 to 30 percent slopes	24.3	1.8%
2045	Marble-Speigle complex, mass wasted, 8 to 30 percent slopes	11.1	0.8%
2046	Klickson-Speigle-Rock outcrop complex, 30 to 60 percent slopes	42.7	3.2%
2052	Brincken, moist-Speigle complex, mass wasted, 8 to 25 percent slopes	111.1	8.4%
2053	Speigle-Rock outcrop complex, 15 to 30 percent slopes	21.0	1.6%
2054	Speigle-Rubble land-Rock outcrop complex, 30 to 90 percent slopes	57.2	4.3%
3024	Phoebe-Battleplain, moist, complex, 0 to 8 percent slopes	22.1	1.7%
3056	Hagen ashy sandy loam, 0 to 3 percent slopes	56.4	4.2%
3057	Hagen ashy sandy loam, 3 to 8 percent slopes	111.7	8.4%
3120	Marble loamy sand, 0 to 8 percent slopes	102.9	7.7%
3121	Marble loamy sand, 8 to 15 percent slopes	35.7	2.7%
3122	Marble loamy sand, 15 to 30 percent slopes	137.6	10.3%
3123	Marble loamy sand, 30 to 55 percent slopes	64.0	4.8%
3131	Phoebe ashy sandy loam, 3 to 8 percent slopes	3.9	0.3%
3142	Spens very gravelly loamy coarse sand, 15 to 30 percent slopes	75.5	5.7%
3143	Spens very gravelly loamy coarse sand, 30 to 65 percent slopes	66.0	5.0%

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
3600	Seaboldt ashy loam, 0 to 8 percent slopes	81.1	6.1%
7120	Urban land-Marble, disturbed complex, 0 to 3 percent slopes	31.8	2.4%
7121	Urban land-Marble, disturbed complex, 3 to 8 percent slopes	21.8	1.6%
7122	Urban land-Marble, disturbed complex, 8 to 15 percent slopes	138.9	10.4%
7123	Urban land-Marble, disturbed complex, 15 to 30 percent slopes	11.3	0.8%
7171	Urban land-Springdale, disturbed complex, 3 to 8 percent slopes	10.4	0.8%
Totals for Area of Interest		1,329.7	100.0%

ENSEMENTS

BENCH MARKS

1 2057.91

2 2045.59

116 2331.53117 2335.73

183 1927.11

184 1998.65

185 1999.00

198 1937.51

199 1912.33

620 2165.78

621 2174.40

640 2159.06

641 2159.79

643 2157.72

644 2159.15

649 2114.36

650 2117.05

651 2090.47

652 2092.00

654 2167.36

655 2101.33 656 2097.12

658 2046.75

1897.25

(FOUND SURVEY MONUMENTS, TEMPORARY CONTROL POINTS, ON-SITE REFERENCE MARKERS)

691 2046.27

692 2010.34

693 2039.70

696 1976.13

700 1945.92704 1929.84

705 1925.43

706 1907.39

707 1902.00

708 1901.25

709 1900.51

710 1899.72

711 1899.35

712 1894.41

713 1890.78

714 1888.02

715 1886.06

716 1885.06

717 1879.55

718 1884.52

719 1888.74

720 1887.59

721 1886.94

722 1887.18

723 1886.31 724 1886.93

725 1886.88

726 1885.43 731 2062.00 795 2114.67 796 2113.76

797 2113.68 798 2117.82

799 1908.57

800 2113.44

801 2101.11

802 2032.05

803 1999.73

804 2007.23

805 2080.85

806 2086.09

807 2092.36

808 2099.56

809 2101.53

810 2084.52

811 1957.45

812 1924.11

659 2007.40 660 2005.98

662 2003.28

663 2032.82

668 2013.15

669 2004.14

670 1978.04

671 1980.92

672 1992.60

675 2012.90

676 2006.15

677 2014.99

679 2061.69

681 2025.45

682 2044.89

689 2070.59

690 2061.66

(INSTRUMENT NUMBERS, EXPLANATIONS, AND DRAFTING TO BE ADDED LATER.)

-S59°04'42"E 123.27' R=542.96' L=87.78' ∆=9°15'46" Ch=N54°26'49"W, 87.68' R=5546.60' L=738.07' Δ=7°37'27" __Ch=N25°09'24"W, 737.52' _S21°20'41"E 147.57' ~S21°05'48"E 150.53' N87°50'52"E 220.00'-N0°30'43"E 220.00'-S87°50'52"W 220.00'-- S89°42'08"E 173.34' SECTION SUBDIVISION LINES AND TIE LINES (TYPICAL) N87°28'17"E 672.26' // \\ \(\) \\ \(\ N89°34'28"W 1314.63' `- N0°56'01"E 100.00'

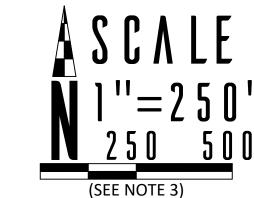
T O POGRAPHIC SURVEY

PORTIONS OF SECTIONS 5, 7, AND 8, TOWNSHIP 24 NORTH, RANGE 43 EAST, WILLAMETTE MERIDIAN, SPOKANE COUNTY, WASHINGTON

LEGEND

BOUNDARY- PROPERTY CORNER

CONTROL- RANDOM SURVEY POINT


BENCH MARK- SEE TABLE

SIGN O UTILITY AND MISCELLANEOUS FEATURES- AS NOTED

NOTES

- 1) VERTICAL DATUM = NAVD88, ESTABLISHED BY OPUS SOLUTION.
- 2) THIS IS NOT A BOUNDARY SURVEY. BOUNDARY AS SHOWN IS BASED ON FOUND
- SURVEY MONUMENTS, RECORDS OF SURVEY, AND PLATS.

 3) THIS DRAWING IS BEST UTILIZED AT 1:2 SCALE ON 11X17 PAPER.
- 4) CAD DRAWING (MODELSPACE) SET TO 1"=25' SCALE.

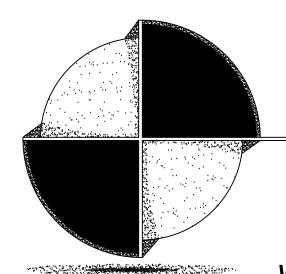
SIGNED ORIGINAL ON FILE AT STEARNS SURVEYING

JOHN STEARNS, PLS 22-010938

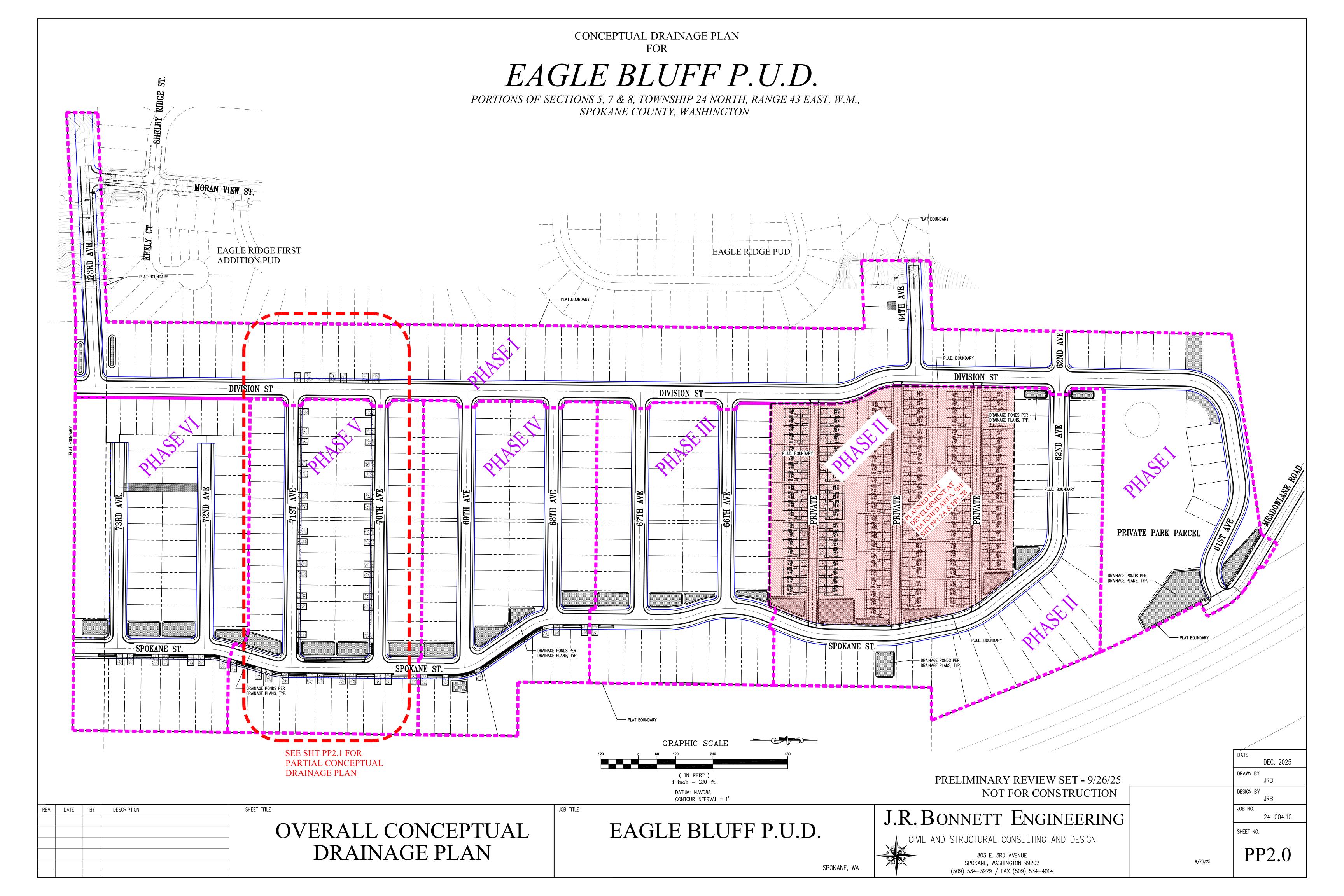
DATE

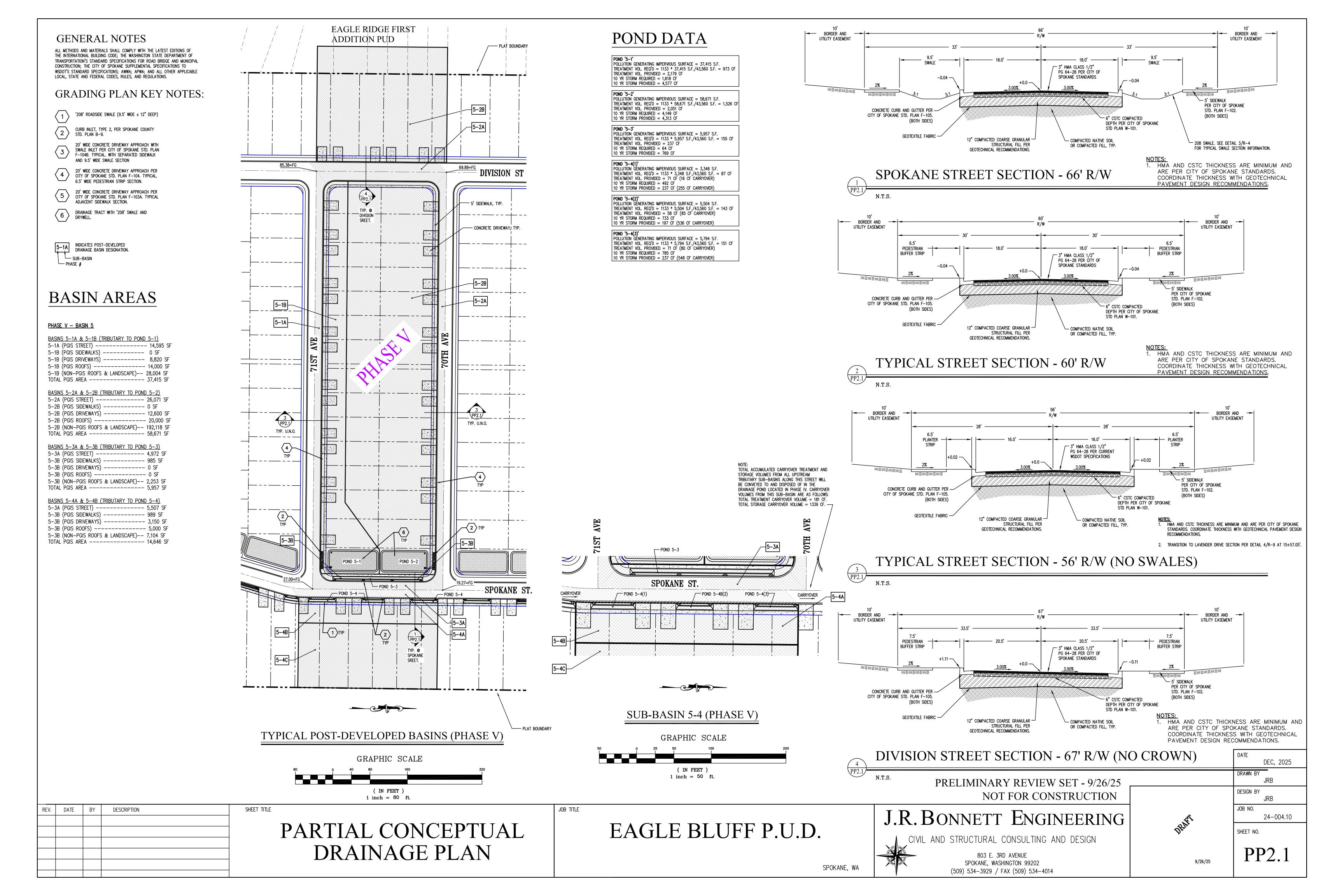
ADD RESS

6211 S MEADOW LANE RD, SPOKANE, WA


PARCELS

CITY OF SPOKANE: 34082.0010, 34082.0009, 34082.0051, 34082.0012, 34053.0045, 34053.0044, 34053.0070, 34053.0069, 34071.0001, 34053.0020. SPOKANE COUNTY: 34086.9098.


CLIENT
HARLEY C DOUGLASS INC


SSINC 25.011 PHONE

DATE MARCH, 2025 PHONE 208.696.2017

STEARNSSURVEYING.COM

DRAINAGE CALCULATIONS

BOWSTRING METHOD (10 YEAR STORM DESIGN) PROJECT: 24-004.10 DETENTION BASIN DESIGN BASIN: B5-1 REVIEWER: JRB NUMBER OF DRYWELLS PROPOSED 06-Oct-25 DATE: 0 Double (type 2) 1.50 7.81 1 Single (type 1) Total Area (calc.) Time of Conc. (calc.)
Composite "C" (calc.)
Time of Conc. (min) 0.82 7.81 Area (Acres) 1.50 0.82 C' Factor Impervious Asphalt Area to Pond **37,415.00** sf Non-PGIS Roof Area 14000.00 sf Other areas (see above right) 0.30 Outflow (cfs)

1.24

	6.98 r	1	0.609	0.609				
#1	#2	#3	#4	#5	#6	#7		
Time	Time	Intensity	Q dev.	V in	V out	Storage		
Inc.	Inc.	,				Req'd)		
(min.)	(sec.) (#1*60)	(in./hr.)	(cfs) (A*C*#3)	(cu. ft.)	(cu. ft.) (Outf.*#2)	(cu. ft.) (#5-#6)		
7.81	468.71	2.00	2.47	1549	140.61	1409		
5	300	2.62	3.24	1301	90	1211		
10	600	1.72	2.12	1612	180	1432		
15	900	1.34	1.66	1756	270	1486		
20	1200	1.13	1.39	1892	360	1532		
25	1500	0.98	1.21	2016	450	1566		
30	1800	0.88	1.09	2130	540	1590		
35	2100	0.80	0.99	2236	630	1606		
40	2400	0.74	0.91	2335	720	1615		
45	2700	0.69	0.85	2428	810	1618		
50	3000	0.64	0.80	2516	900	161		
55	3300	0.61	0.75	2600	990	1610		
60	3600	0.58	0.71	2679	1080	1599		
90	5400	0.45	0.56	3095	1620	147		
120	7200	0.38	0.47	3439	2160	1279		
180	10800	0.30	0.37	4001	3240	76		
240	14400	0.25	0.31	4461	4320	14		
300	18000	0.22	0.27	4857	5400	-543		
360	21600	0.19	0.24	5208	6480	-127		
420	25200	0.18	0.22	5526	7560	-203		
480	28800	0.16	0.20	5818	8640	-282		

TIME OF	CONCENTRATION	(minutes)

Tc (sheet flow)		Tc (gutter)	
K (lawn) = L(A) = S(A) =	420 928 0.08	K (gutter) = L(gu) = S(gu) =	1200 0 0.08
Tc (A) =	7.81	Tc (gu) =	0.00
K (ACP) = L(B) = S(B) =	1200 0 0.02	Tc (gu) = Tc (A+B) = Tc (total) =	0.00 7.81 7.81
Tc (B) =	0.00	Intensity =	2.00

AREA SUMMARY				
	Areas (AC)	Area (SF)	"C"	A*C
SITE	1.502	65419.00		
Asphalt	0.335	14595.00	0.90	0.302
PGIS Roof	0.321	14000.00	0.90	0.289
Attached Concrete	0.202	8820.00	0.90	0.182
Detached Concrete	0.064	2797.00	0.90	0.058
Non PGIS Roof	0.321	14000.00	0.90	0.289
Landscape	0.257	11207.00	0.45	0.116
Undisturbed	0.000		0.25	0.000
	Total Area 1.50		Comp "C" 0.82291	
Q (total) = C*I*A _(total) =			2.47	cfs
$Q (roof) = C*I*A_{(roof)} =$		*	0.58	cfs
Q (imp) = $C*I*A_{(imp)}$ =			1.54	cfs

	AREA			DEF	PTH	VOL	UME
POND	BOTTOM	208	STORM	208	STORM	208	STORM
5-1	4146	4569	5007	0.5	1	2178.75	4576.5
					TOTAL	2178.75	4576.5

NOTE: THE TREATMENT AREA LISTED ABOVE IS THE AREA LOCATED ABOVE THE POND FLOOR AT THE "OUTLET ELEV" AND INCLUDES THE POND SIDE SLOPES.

DRAINAGE POND CALCULATIONS

Area * C" Factor

Required grassy swale treatment volume: 1133 x Asphalt/Contaminant Area x (1 ac/ 43,500 sf) =

1815 x Asphalt/Contaminant Area x (1 ac/ 43,500 sf) = Provided treatment volume (pond bot. to outlet) =

973 cu. ft.	
1559 cu. ft.	
2179 cu. ft.	

DRYWELL REQUIREMENTS - 10 YEAR DESIGN STORM

C 00 D

Maximum storage required by Bowstring = Provided 10-yr total storage volume =

1618 cu. ft.	OK
4577 cu. ft.	

Number and type of Drywells Required =

1 Single

0 Double

BOWSTRING METHOD (10 YEAR STORM DESIGN) 24-004.10 PROJECT: B5-2 JRB DETENTION BASIN DESIGN BASIN: REVIEWER: NUMBER OF DRYWELLS PROPOSED DATE: 06-Oct-25 1 Double (type 2) 5.76 7.81 O Single (type 1) Total Area (calc.) Time of Conc. (calc.)
Composite "C" (calc.)
Time of Conc. (min) 0.60 7.81 Area (Acres) 5.76 C' Factor 0.60 Impervious Asphalt Area to Pond **58,671.00** sf Non-PGIS Roof Area 20000.00 sf Other areas (see above right) Outflow (cfs)

3.45

rea C Factor				3.43		
1	6.98 r	1	0.609			
#1	#2	#3	#4	#5	#6	#7
Time	Time	Intensity	Q dev.	V in	V out	Storage
Inc.	Inc.					Reg'd)
(min.)	(sec.)	(in./hr.)	(cfs)	(cu. ft.)	(cu. ft.)	(cu. ft.)
(111111.)	(#1*60)	(111.7111.)	(A*C*#3)	(00.11.)	(Outf.*#2)	(#5-#6)
7.81	468.71	2.00	6.89	4328	468.71	3859
	300	2.62	9.04	3635	300	3335
10	600	1.72	5.93	4502	600	390
15	900	1.34	4.63	4906	900	400
20	1200	1.13	3.89	5284	1200	408
25	1500	0.98	3.39	5630	1500	413
30	1800	0.88	3.04	5949	1800	414
35	2100	0.80	2.76	6246	2100	414
40	2400	0.74	2.55	6522	2400	412
45	2700	0.69	2.37	6783	2700	408
50	3000	0.64	2.22	7028	3000	402
55	3300	0.61	2.10	7262	3300	396
60	3600	0.58	1.99	7484	3600	388
90	5400	0.45	1.56	8646	5400	324
120	7200	0.38	1.31	9606	7200	240
180	10800	0.30	1.02	11175	10800	37
240	14400	0.25	0.86	12460	14400	-194
300	18000	0.22	0.75	13566	18000	-443
360	21600	0.19	0.67	14548	21600	-705
420	25200	0.18	0.61	15435	25200	-976
480	28800	0.16	0.56	16250	28800	-1255

TIME OF CONCENTRATION (minutes)					
Tc (sheet flow)		Tc (gutter)			
K (lawn) =	420	K (gutter) =			
L(A) =	928	L(gu) =			
S(A) =	0.08	S(gu) =			

Tc (A) =	7.81	Tc (gu) =	0.00
K (ACP) = L(B) = S(B) =	1200 0 0.02	Tc (gu) = Tc (A+B) = Tc (total) =	0.00 7.81 7.81
Tc (B) =	0.00	Intensity =	2.00

AREA SUMMARY				
	Areas (AC)	Area (SF)	"C"	A*C
SITE	5.757	250789.00		
Asphalt	0.599	26071.00	0.90	0.539
PGIS Roof	0.459	20000.00	0.90	0.413
Attached Concrete	0.289	12600.00	0.90	0.260
Detached Concrete	0.108	4698.00	0.90	0.097
Non PGIS Roof	0.459	20000.00	0.90	0.413
Landscape	3.843	167420.00	0.45	1.730
Undisturbed	0.000		0.25	0.000
	Total Area 5.76		Comp "C" 0.5995921	
Q (total) = C*I*A _(total) =		*	6.89 c	-
$Q (roof) = C*I*A_{(roof)} =$		*	0.82 c	_
Q (imp) = $C*I*A_{(imp)}$ =			2.42 c	fs

		AREA		DEI	PTH	VOL	UME
POND	воттом	208	STORM	208	STORM	208	STORM
5-2	3900	4305	4725	0.5	1	2051.25	4312.5
					TOTAL	2051.25	4312.5

1200

0.08

NOTE: THE TREATMENT AREA LISTED ABOVE IS THE AREA LOCATED ABOVE THE POND FLOOR AT THE "OUTLET ELEV" AND INCLUDES THE POND SIDE SLOPES.

DRAINAGE POND CALCULATIONS

Area * C" Factor

Required grassy swale treatment volume: 1133 x Asphalt/Contaminant Area x (1 ac/ 43,500 sf) = 1815 x Asphalt/Contaminant Area x (1 ac/ 43,500 sf) =

Provided treatment volume (pond bot. to outlet) =

1526 cu. ft.	oĸ
2445 cu. ft.	NG
2051 cu. ft.	
	NG

DRYWELL REQUIREMENTS - 10 YEAR DESIGN STORM

Maximum storage required by Bowstring = Provided 10-yr total storage volume =

4149 cu. ft.	OK
4313 cu. ft.	

Number and type of Drywells Required =

1 Single

0 Double

BOWSTRING METHOD (10 YEAR STORM DESIGN) 24-004.10 PROJECT: B5-3 JRB DETENTION BASIN DESIGN BASIN: REVIEWER: NUMBER OF DRYWELLS PROPOSED DATE: 06-Oct-25 1 Single (type 1) 0 Double (type 2) 0.19 7.81 Total Area (calc.)
Time of Conc. (calc.)
Composite "C" (calc.)
Time of Conc. (min) 0.78 7.81 0.19 Area (Acres) C' Factor 0.78

	0.98 1		0.609			
#1	#2	#3	#4	#5	#6	#7
Time	Time	Intensity	Q dev.	V in	V out	Storage
Inc.	Inc.					Req'd)
(min.)	(sec.) (#1*60)	(in./hr.)	(cfs) (A*C*#3)	(cu. ft.)	(cu. ft.) (Outf.*#2)	(cu. ft.) (#5-#6)
7.81	468.71	2.00	0.29	183	140.61	4
5	300	2.62	0.38	154	90	6
10	600	1.72	0.25	191	180	1
15	900	1.34	0.20	208	270	-6
20	1200	1.13	0.16	224	360	-13
25	1500	0.98	0.14	239	450	-21
30	1800	0.88	0.13	252	540	-28
35	2100	0.80	0.12	265	630	-36
40	2400	0.74	0.11	277	720	-44
45	2700	0.69	0.10	288	810	-52
50	3000	0.64	0.09	298	900	-60
55	3300	0.61	0.09	308	990	-68
60	3600	0.58	0.08	317	1080	-76
90	5400	0.45	0.07	367	1620	-125
120	7200	0.38	0.06	407	2160	-175
180	10800	0.30	0.04	474	3240	-276
240	14400	0.25	0.04	528	4320	-379
300	18000	0.22	0.03	575	5400	-482
360	21600	0.19	0.03	617	6480	-586
420	25200	0.18	0.03	654	7560	-690
480	28800	0.16	0.02	689	8640	-795

TIME OF CONCENTRATION (minutes)

Tc (sheet flow))	Tc (gutter)	
K (lawn) = L(A) = S(A) =	420 928 0.08	K (gutter) = L(gu) = S(gu) =	1200 0 0.08
Tc (A) =	7.81	Tc (gu) =	0.00
K (ACP) = L(B) = S(B) =	1200 0 0.02	Tc (gu) = Tc (A+B) = Tc (total) =	0.00 7.81 7.81
Tc (B) =	0.00	Intensity =	2.00

AREA SUMMARY				
	Areas (AC)	Area (SF)	"C"	A*C
SITE	0.188	8210.00		
Asphalt	0.114	4972.00	0.90	0.103
PGIS Roof	0.000	0.00	0.90	0.000
Attached Concrete	0.023	985.00	0.90	0.020
Detached Concrete	0.000	0.00	0.90	0.000
Non PGIS Roof	0.000	0.00	0.90	0.000
Landscape	0.052	2253.00	0.45	0.023
Undisturbed	0.000		0.25	0.000
	Total Area 0.19		Comp "C" 0.7765104	
Q (total) = C*I*A _(total) = Q (roof) = C*I*A _(roof) =		*	0.29 c 0.00 c	
Q (imp) = $C^*I^*A_{(imp)}$ =			0.25 c	

		AREA		DEI	PTH	VOL	UME
POND	BOTTOM	208	STORM	208	STORM	208	STORM
5-3	187	760	1351	0.5	1	236.75	769
					TOTAL	236.75	769

NOTE: THE TREATMENT AREA LISTED ABOVE IS THE AREA LOCATED ABOVE THE POND FLOOR AT THE "OUTLET ELEV" AND INCLUDES THE POND SIDE SLOPES.

DRAINAGE POND CALCULATIONS

Required grassy swale treatment volume: 1133 x Asphalt/Contaminant Area x (1 ac/ 43,500 sf) =

1815 x Asphalt/Contaminant Area x (1 ac/ 43,500 sf) = Provided treatment volume (pond bot. to outlet) =

155 cu. ft.	oĸ
248 cu. ft.	NG
237 cu. ft.	

DRYWELL REQUIREMENTS - 10 YEAR DESIGN STORM

Maximum storage required by Bowstring = Provided 10-yr total storage volume =

64 cu. ft.	OK
769 cu. ft.	

Number and type of Drywells Required =

1 Single

0 Double

6.98	n	0.609			
			0.10		
			0.00)	
		(se	ee above ri	ght)	
Area	C)	1000.00	sf	
alt Area to Pond	l		3348.00	sf	
			0.79		
			0.13	3	
iin)			5.00		
alc.)		0.79			
alc.)		5.00			
c.)		0.13			
Single (type 1)	C	Double (type 2)			
YWELLS PROF	POSED			REVIEWER: DATE:	JRB 06-Oct-25
SIN DESIGN					B 5-4(1)
	AR STORM DE	SIGN)		PROJECT:	24-004.10
	SIN DESIGN RYWELLS PROF Single (type 1) 2.) alc.) salc.) ini) alt Area to Pond area	SIN DESIGN RYWELLS PROPOSED single (type 1) () clac.) clac.) alc.) alc.) alt. Area to Pond	XYWELLS PROPOSED single (type 1) 0 Double (type 2) 0.13 alc.) 0.13 alc.) 0.79 in) alt Area to Pond Area 0 (Signature) 0 (Signature) 0 (Signature) 0 (Signature) 1 (Signat	SIN DESIGN (YWELLS PROPOSED Single (type 1) 0 Double (type 2) 0.13 alc.) 0.79 alc.) 0.70 alc.) 0.7	SIN DESIGN REVIEWER: REVIEWER: DATE: O Double (type 2)

#1 #2 #3 #4 #5 #6 #7 Time Inc. Inc. (min.) (sec.) (in./hr.) (cfs) (cu. ft.)							
Inc.	#1	#2	#3	#4	#5	#6	#7
(min.) (sec.) (in./hr.) (cf.) (cu. ft.) (cu. ft.) (cu. ft.) (cu. ft.) 5.00 300.00 2.62 0.27 110 0.00 110 5 300 2.62 0.27 110 0 110 10 600 1.72 0.18 126 0 126 15 900 1.34 0.14 141 0 141 20 1200 1.13 0.12 153 0 153 25 1500 0.98 0.10 165 0 165 30 1800 0.88 0.09 175 0 175 35 2100 0.80 0.08 185 0 185 40 2400 0.74 0.08 193 0 193 45 2700 0.69 0.07 202 0 202 50 3000 0.64 0.07 209 0 209	Time	Time	Intensity	Q dev.	V in	V out	Storage
(#1*60) (A*C*#3) (Outf.*#2) (#5-#6) 5.00 300.00 2.62 0.27 110 0.00 110 5 300 2.62 0.27 110 0 110 10 600 1.72 0.18 126 0 126 15 900 1.34 0.14 141 0 141 20 1200 1.13 0.12 153 0 153 25 1500 0.98 0.10 165 0 165 30 1800 0.88 0.09 175 0 175 35 2100 0.80 0.08 185 0 185 40 2400 0.74 0.08 193 0 193 45 2700 0.69 0.07 202 0 202 50 3000 0.64 0.07 209 0 209 55 3300 0.61 0.06 <td>Inc.</td> <td>Inc.</td> <td></td> <td></td> <td></td> <td></td> <td>Req'd)</td>	Inc.	Inc.					Req'd)
5 300 2.62 0.27 110 0 110 10 600 1.72 0.18 126 0 126 15 900 1.34 0.14 141 0 141 20 1200 1.13 0.12 153 0 153 25 1500 0.98 0.10 165 0 165 30 1800 0.88 0.09 175 0 175 35 2100 0.80 0.08 185 0 185 40 2400 0.74 0.08 193 0 193 45 2700 0.69 0.07 202 0 202 50 3000 0.64 0.07 209 0 209 55 3300 0.61 0.06 217 0 217 60 3600 0.58 0.06 223 0 223 90 5400	(min.)		(in./hr.)		(cu. ft.)		
5 300 2.62 0.27 110 0 110 10 600 1.72 0.18 126 0 126 15 900 1.34 0.14 141 0 141 20 1200 1.13 0.12 153 0 153 25 1500 0.98 0.10 165 0 165 30 1800 0.88 0.09 175 0 175 35 2100 0.80 0.08 185 0 185 40 2400 0.74 0.08 193 0 193 45 2700 0.69 0.07 202 0 202 50 3000 0.64 0.07 209 0 209 55 3300 0.61 0.06 217 0 217 60 3600 0.58 0.06 223 0 223 90 5400							
10 600 1.72 0.18 126 0 126 15 900 1.34 0.14 141 0 141 20 1200 1.13 0.12 153 0 153 25 1500 0.98 0.10 165 0 165 30 1800 0.88 0.09 175 0 175 35 2100 0.80 0.08 185 0 185 40 2400 0.74 0.08 193 0 193 45 2700 0.69 0.07 202 0 202 50 3000 0.64 0.07 209 0 209 55 3300 0.61 0.06 217 0 217 60 3600 0.58 0.06 223 0 223 90 5400 0.45 0.05 259 0 259 120 7200	5.00	300.00	2.62	0.27	110	0.00	110
15 900 1.34 0.14 141 0 141 20 1200 1.13 0.12 153 0 153 25 1500 0.98 0.10 165 0 165 30 1800 0.88 0.09 175 0 175 35 2100 0.80 0.08 185 0 185 40 2400 0.74 0.08 193 0 193 45 2700 0.69 0.07 202 0 202 50 3000 0.64 0.07 209 0 209 55 3300 0.61 0.06 217 0 217 60 3600 0.58 0.06 223 0 223 90 5400 0.45 0.05 259 0 259 120 7200 0.38 0.04 289 0 289 180 10800	5	300	2.62	0.27	110	0	110
20 1200 1.13 0.12 153 0 153 25 1500 0.98 0.10 165 0 165 30 1800 0.88 0.99 175 0 175 35 2100 0.80 0.08 185 0 185 40 2400 0.74 0.08 193 0 193 45 2700 0.69 0.07 202 0 202 50 3000 0.64 0.07 209 0 209 55 3300 0.61 0.06 217 0 217 60 3600 0.58 0.06 223 0 223 90 5400 0.45 0.05 259 0 259 120 7200 0.38 0.04 289 0 289 180 10800 0.30 0.03 337 0 337 240 14400 </td <td>10</td> <td>600</td> <td>1.72</td> <td>0.18</td> <td>126</td> <td>0</td> <td>126</td>	10	600	1.72	0.18	126	0	126
25 1500 0.98 0.10 165 0 165 30 1800 0.88 0.09 175 0 175 35 2100 0.80 0.08 185 0 185 40 2400 0.74 0.08 193 0 193 45 2700 0.69 0.07 209 0 202 50 3000 0.64 0.07 209 0 209 55 3300 0.61 0.06 217 0 217 60 3600 0.58 0.06 223 0 223 90 5400 0.45 0.05 259 0 259 120 7200 0.38 0.04 289 0 289 180 10800 0.30 0.03 337 0 337 240 14400 0.25 0.03 376 0 376 360 21600	15	900	1.34	0.14	141	0	141
30 1800 0.88 0.09 175 0 175 35 2100 0.80 0.08 185 0 185 40 2400 0.74 0.08 193 0 193 45 2700 0.69 0.07 202 0 202 50 3000 0.64 0.07 209 0 209 55 3300 0.61 0.06 217 0 217 60 3600 0.58 0.06 223 0 223 90 5400 0.45 0.05 259 0 259 120 7200 0.38 0.04 289 0 289 180 10800 0.30 0.03 337 0 337 240 14400 0.25 0.03 376 0 376 300 18000 0.22 0.02 410 0 410 360 21600 0.19 0.02 440 0 440 420 25200 0.18 0.02 467 0 467	20	1200	1.13	0.12	153	0	153
35 2100 0.80 0.08 185 0 185 40 2400 0.74 0.08 193 0 193 45 2700 0.69 0.07 202 0 202 50 3000 0.64 0.07 209 0 209 55 3300 0.61 0.06 217 0 217 60 3600 0.58 0.06 223 0 223 90 5400 0.45 0.05 259 0 259 120 7200 0.38 0.04 289 0 289 180 10800 0.30 0.03 337 0 337 240 14400 0.25 0.03 376 0 376 300 18000 0.22 0.02 410 0 410 360 21600 0.19 0.02 440 0 440 420 2	25	1500	0.98	0.10	165	0	165
40 2400 0.74 0.08 193 0 193 45 2700 0.69 0.07 202 0 202 50 3000 0.64 0.07 209 0 209 55 3300 0.61 0.06 217 0 217 60 3600 0.58 0.06 223 0 223 90 5400 0.45 0.05 259 0 259 120 7200 0.38 0.04 289 0 289 180 10800 0.30 0.03 337 0 337 240 14400 0.25 0.03 376 0 376 300 18000 0.22 0.02 410 0 410 360 21600 0.19 0.02 440 0 440 420 25200 0.18 0.02 467 0 467	30	1800	0.88	0.09	175	0	175
45 2700 0.69 0.07 202 0 202 50 3000 0.64 0.07 209 0 209 55 3300 0.61 0.06 217 0 217 60 3600 0.58 0.06 223 0 223 90 5400 0.45 0.05 259 0 259 120 7200 0.38 0.04 289 0 289 180 10800 0.30 0.03 337 0 337 240 14400 0.25 0.03 376 0 376 300 18000 0.22 0.02 410 0 410 360 21600 0.19 0.02 440 0 440 420 25200 0.18 0.02 467 0 467	35	2100	0.80	0.08	185	0	185
50 3000 0.64 0.07 209 0 209 55 3300 0.61 0.06 217 0 217 60 3600 0.58 0.06 223 0 223 90 5400 0.45 0.05 259 0 259 120 7200 0.38 0.04 289 0 289 180 10800 0.30 0.03 337 0 337 240 14400 0.25 0.03 376 0 376 300 18000 0.22 0.02 410 0 410 360 21600 0.19 0.02 440 0 440 420 25200 0.18 0.02 467 0 467	40	2400	0.74	0.08	193	0	193
55 3300 0.61 0.06 217 0 217 60 3600 0.58 0.06 223 0 223 90 5400 0.45 0.05 259 0 259 120 7200 0.38 0.04 289 0 289 180 10800 0.30 0.03 337 0 337 240 14400 0.25 0.03 376 0 376 300 18000 0.22 0.02 410 0 410 360 21600 0.19 0.02 440 0 440 420 25200 0.18 0.02 467 0 467	45	2700	0.69	0.07		0	202
60 3600 0.58 0.06 223 0 223 90 5400 0.45 0.05 259 0 259 120 7200 0.38 0.04 289 0 289 180 10800 0.30 0.03 337 0 337 240 14400 0.25 0.03 376 0 376 300 18000 0.22 0.02 410 0 440 360 21600 0.19 0.02 440 0 440 420 25200 0.18 0.02 467 0 467	50	3000	0.64	0.07	209	0	209
90 5400 0.45 0.05 259 0 259 120 7200 0.38 0.04 289 0 289 180 10800 0.30 0.03 337 0 337 240 14400 0.25 0.03 376 0 376 300 18000 0.22 0.02 410 0 410 360 21600 0.19 0.02 440 0 440 420 25200 0.18 0.02 467 0 467	55	3300	0.61	0.06	217	0	217
120 7200 0.38 0.04 289 0 289 180 10800 0.30 0.03 337 0 337 240 14400 0.25 0.03 376 0 376 300 18000 0.22 0.02 410 0 410 360 21600 0.19 0.02 440 0 440 420 25200 0.18 0.02 467 0 467	60	3600	0.58	0.06	223	0	223
180 10800 0.30 0.03 337 0 337 240 14400 0.25 0.03 376 0 376 300 18000 0.22 0.02 410 0 440 360 21600 0.19 0.02 440 0 440 420 25200 0.18 0.02 467 0 467	90	5400	0.45	0.05	259	0	259
240 14400 0.25 0.03 376 0 376 300 18000 0.22 0.02 410 0 410 360 21600 0.19 0.02 440 0 440 420 25200 0.18 0.02 467 0 467	120	7200	0.38	0.04	289	0	289
300 18000 0.22 0.02 410 0 410 360 21600 0.19 0.02 440 0 440 420 25200 0.18 0.02 467 0 467	180	10800	0.30	0.03	337	0	337
360 21600 0.19 0.02 440 0 440 420 25200 0.18 0.02 467 0 467	240	14400	0.25	0.03	376	0	376
420 25200 0.18 0.02 467 0 467	300	18000	0.22	0.02	410	0	410
	360	21600	0.19	0.02	440	0	440
480 28800 0.16 0.02 492 0 492	420	25200	0.18	0.02	467	0	467
	480	28800	0.16	0.02	492	0	492

TIME OF CONCENTRATION (minutes)

Tc (sheet flow)		Tc (gutter)	
K (lawn) = L(A) = S(A) =	420 0 0.02	K (gutter) = L(gu) = S(gu) =	1200 92 0.01
Tc (A) =	0.00	Tc (gu) =	0.77
K (ACP) = L(B) = S(B) =	1200 18 0.01	Tc (gu) = Tc (A+B) = Tc (total) =	0.77 0.15 5.00
Tc (B) =	0.15	Intensity =	2.62

AREA SUMMARY				
	Areas	Area	"C"	A*C
(AC)	(8	SF)		
SITE	0.133	5784.00		
Asphalt	0.033	1418.00	0.90	0.029
PGIS Roof	0.023	1000.00	0.90	0.021
Attached Concrete	0.021	930.00	0.90	0.019
Detached Concrete	0.000	0.00	0.90	0.000
Non PGIS Roof	0.023	1000.00	0.90	0.021
Landscape	0.033	1436.00	0.45	0.015
Undisturbed	0.000		0.25	0.000
To	otal Area		Comp "C"	
	0.13		0.788278	
Q (total) = C*I*A _(total) =			0.27	cfs
Q (roof) = C*I*A _(roof) =		*	0.05	cfs
$Q (imp) = C*I*A_{(imp)} =$			0.18	cfs

		AREA		DEF	PTH	VOL	UME
POND	BOTTOM	208	STORM	208	STORM	208	STORM
5-4(1)	54	228	420	0.5	1	70.5	237
•					TOTAL	70.5	237

NOTE: THE TREATMENT AREA LISTED ABOVE IS THE AREA LOCATED ABOVE THE

POND FLOOR AT THE "OUTLET ELEV" AND INCLUDES THE POND SIDE SLOPES.

DRAINAGE POND CALCULATIONS
Required grassy swale treatment volume:
1133 x Asphalt/Contaminant Area x (1 ac/ 43,500 sf) = 1815 x Asphalt/Contaminant Area x (1 ac/ 43,500 sf) =

Provided treatment volume (pond bot. to outlet) =

DRYWELL REQUIREMENTS - 10 YEAR DESIGN STORM Maximum storage required by Bowstring =

Provided 10-yr total storage volume =

	. ,			

87 cu. ft.	NG	CARRYOVER =	17	cu. ft.
140 cu. ft.	NG	CARRYOVER =	69	cu. ft.
71 cu. ft.		-		

492 cu. ft.	NG	CARRYOVER =	255	cu. ft.
237 cu. ft.		_		

Number and type of Drywells Required =

0 Single 0 Double

BOWSTRING METHOD (10 YEAR STORI	M DESIGN)	PROJECT:	24-004.10
DETENTION BASIN DESIGN		BASIN: REVIEWER:	B 5-4(2) JRB
NUMBER OF DRYWELLS PROPOSED		DATE:	06-Oct-25
0 Single (type 1)	0 Double (type 2)		
Total Area (calc.)	0.17		
Time of Conc. (calc.)	5.00		
Composite "C" (calc.)	0.89		
Time of Conc. (min)		5.00	
Area (Acres)		0.17	
C' Factor		0.89	
Impervious Asphalt Area to Pond	550	4.00 sf	
Non-PGIS Roof Area	200	0.00 sf	
Other areas	(see abo	ve right)	
Outflow (cfs)		0.00	
Area * C" Factor		0.16	
m 6.98 n	0.609		

	0.98 1		0.609			
#1	#2	#3	#4	#5	#6	#7
Time	Time	Intensity	Q dev.	V in	V out	Storage
Inc.	Inc.					Reg'd)
(min.)	(sec.) (#1*60)	(in./hr.)	(cfs) (A*C*#3)	(cu. ft.)	(cu. ft.) (Outf.*#2)	(cu. ft.) (#5-#6)
5.00	300.00	2.62	0.41	164	0.00	16
5	300	2.62	0.41	164	0	16-
10	600	1.72	0.27	188	0	18
15	900	1.34	0.21	210	0	21
20	1200	1.13	0.18	229	0	22
25	1500	0.98	0.15	246	0	24
30	1800	0.88	0.14	261	0	26
35	2100	0.80	0.12	275	0	27
40	2400	0.74	0.12	288	0	28
45	2700	0.69	0.11	300	0	30
50	3000	0.64	0.10	312	0	31
55	3300	0.61	0.09	323	0	32
60	3600	0.58	0.09	333	0	33
90	5400	0.45	0.07	387	0	38
120	7200	0.38	0.06	431	0	43
180	10800	0.30	0.05	502	0	50
240	14400	0.25	0.04	561	0	56
300	18000	0.22	0.03	611	0	61
360	21600	0.19	0.03	655	0	65
420	25200	0.18	0.03	696	0	69
480	28800	0.16	0.03	733	0	73

TIME OF CON	CENTRATION (m	inutes)	
Tc (sheet flow)		Tc (gutter)	
K (lawn) = L(A) = S(A) =	420 0 0.02	K (gutter) = L(gu) = S(gu) =	1200 92 0.01
Tc (A) =	0.00	Tc (gu) =	0.77
K (ACP) = L(B) = S(B) =	1200 18 0.01	Tc (gu) = Tc (A+B) = Tc (total) =	0.77 0.15 5.00
Tc (B) =	0.15	Intensity =	2.62

AREA SUMMARY				
	Areas	Area	"C"	A*C
(4	AC) (S	SF)		-
SITE	0.174	7592.00		
Asphalt	0.044	1924.00	0.90	0.040
PGIS Roof	0.046	2000.00	0.90	0.041
Attached Concrete	0.036	1580.00	0.90	0.033
Detached Concrete	0.000	0.00	0.90	0.000
Non PGIS Roof	0.046	2000.00	0.90	0.041
Landscape	0.002	88.00	0.45	0.001
Undisturbed	0.000		0.25	0.000
	Total Area		Comp "C"	
	0.17		0.894784	
Q (total) = C*I*A _(total) =			0.41 c	fs
Q (roof) = C*I*A _(roof) =		*	0.11 c	
Q (imp) = C*I*A _(imp) =			0.30 c	

	AREA			DEF	PTH	VOL	UME
POND	BOTTOM	208	STORM	208	STORM	208	STORM
5-4(2)	44	188	350	0.5	1	58	197
•					TOTAL	<u>58</u>	<u>197</u>

NOTE: THE TREATMENT AREA LISTED ABOVE IS THE AREA LOCATED ABOVE THE

POND FLOOR AT THE "OUTLET ELEV" AND INCLUDES THE POND SIDE SLOPES.

DRAINAGE POND CALCULATIONS Required grassy swale treatment volume: 1133 x Asphalt/Contaminant Area x (1 ac/ 43,500 sf) = 1815 x Asphalt/Contaminant Area x (1 ac/ 43,500 sf) =

Provided treatment volume (pond bot. to outlet) =

DRYWELL REQUIREMENTS - 10 YEAR DESIGN STORM

Maximum storage required by Bowstring =
Provided 10-yr total storage volume =

143 cu. ft.	NG	CARRYOVER =	85	cu. ft.
229 cu. ft.	NG	CARRYOVER =	171	cu. ft.
EQ ou ft				

		<u></u>		
733 cu. ft.	NG	CARRYOVER =	536	cu. ft.
197 cu. ft.				

0 Single 0 Double

						======
m	6.98 n		0.609	0.17		
Area * C" Factor				0.17		
Outflow (cfs)			(0000	0.00	7	
Other areas			(see a	bove righ	t)	
Non-PGIS Roof A	rea		2	000.00 s	f	
Impervious Aspha	It Area to Pond		5	794.00 s	f	
C' Factor				0.87		
Area (Acres)				0.19		
Time of Conc. (mi	n)			5.00		
Composite "C" (ca	alc.)		0.87			
Time of Conc. (ca	lc.)		5.00			
Total Area (calc	.)		0.19			
0 Si	ingle (type 1)		O Double (type 2)			
NUMBER OF DR	YWELLS PROPO	SED			ATE:	06-Oct-25
DETERMINION BAC	JIN DEGICIN			_	REVIEWER:	JRB
DETENTION BAS		O I O I WI I	BEOIGIT)		BASIN:	B 5-4(3)
BOWSTRING ME	THOD (10 YEAR	STORM	DESIGN)	-	PROJECT:	24-004.10

#1	#2	#3	#4	#5	#6	#7
Time	Time	Intensity	Q dev.	V in	V out	Storage
Inc.	Inc.					Reg'd)
(min.)	(sec.) (#1*60)	(in./hr.)	(cfs) (A*C*#3)	(cu. ft.)	(cu. ft.) (Outf.*#2)	(cu. ft.) (#5-#6)
5.00	300.00	2.62	0.44	176	0.00	176
5	300	2.62	0.44	176	0	176
10	600	1.72	0.29	201	0	201
15	900	1.34	0.22	225	0	225
20	1200	1.13	0.19	245	0	245
25	1500	0.98	0.16	263	0	263
30	1800	0.88	0.15	279	0	279
35	2100	0.80	0.13	295	0	295
40	2400	0.74	0.12	309	0	309
45	2700	0.69	0.11	322	0	322
50	3000	0.64	0.11	334	0	334
55	3300	0.61	0.10	346	0	346
60	3600	0.58	0.10	357	0	357
90	5400	0.45	0.08	414	0	414
120	7200	0.38	0.06	461	0	461
180	10800	0.30	0.05	538	0	538
240	14400	0.25	0.04	601	0	601
300	18000	0.22	0.04	654	0	654
360	21600	0.19	0.03	702	0	702
420	25200	0.18	0.03	745	0	745
480	28800	0.16	0.03	785	0	785

TIME OF CON	CENTRATION (m	inutes)	
Tc (sheet flow)		Tc (gutter)	
K (lawn) = L(A) = S(A) =	420 0 0.02	K (gutter) = L(gu) = S(gu) =	1200 92 0.01
Tc (A) =	0.00	Tc (gu) =	0.77
K (ACP) = L(B) = S(B) =	1200 18 0.01	Tc (gu) = Tc (A+B) = Tc (total) =	0.77 0.15 5.00
Tc (B) =	0.15	Intensity =	2.62

AREA SUMMARY				
	Areas	Area	"C"	A*C
(AC)	(8	SF)		
SITE	0.192	8374.00		
Asphalt	0.050	2165.00	0.90	0.045
PGIS Roof	0.046	2000.00	0.90	0.041
Attached Concrete	0.037	1629.00	0.90	0.034
Detached Concrete	0.000	0.00	0.90	0.000
Non PGIS Roof	0.046	2000.00	0.90	0.041
Landscape	0.013	580.00	0.45	0.006
Undisturbed	0.000		0.25	0.000
To	otal Area		Comp "C"	
	0.19		0.8688321	
Q (total) = C*I*A _(total) =			0.44	cfs
Q (roof) = C*I*A _(roof) =		*	0.11	cfs
Q (imp) = C*I*A _(imp) =			0.31	

	AREA		DEI	PIH	VOL	UME	
POND	BOTTOM	208	STORM	208	STORM	208	STORM
5-4(3)	54	228	420	0.5	1	70.5	237
•	•				TOTAL	<u>70.5</u>	237

NOTE: THE TREATMENT AREA LISTED ABOVE IS THE AREA LOCATED ABOVE THE POND FLOOR AT THE "OUTLET ELEV" AND INCLUDES THE POND SIDE SLOPES.

DRAINAGE POND CALCULATIONS
Required grassy swale treatment volume:
1133 x Asphalt/Contaminant Area x (1 ac/ 43,500 sf) = 1815 x Asphalt/Contaminant Area x (1 ac/ 43,500 sf) =

Provided treatment volume (pond bot. to outlet) =

DRYWELL REQUIREMENTS - 10 YEAR DESIGN STORM

Maximum storage required by Bowstring =
Provided 10-yr total storage volume =

151 cu. ft.	NG	CARRYOVER =	80	cu. ft.
241 cu. ft.	NG	CARRYOVER =	171	cu. ft.
71 cu. ft.		_		

NG CARRYOVER = 548 cu. ft. 785 cu. ft. 237 cu. ft.

Number and type of Drywells Required =

0 Single 0 Double