

TECHNICAL MEMORANDUM

T.O ENGINEERS

FROM:	Greg Figg, WSDOT Bill White, Senior Planner	CONTRACTOR OF WASHING
-	Garrett Scott, P.E., PTOE, Transportation Engineer	
DATE:	April 2022	Joratt Seatt
JOB NO.:	210313	21026499 PECISTERED 4/15/2022
RE:	Crystal Ridge Threshold Analysis	S CLOSER LONG
CC:	Mamdouh El-Aarag, P.E., MHE Engineering	SJUNAL
Urgent	⊠For Review	Reply

This memorandum summarizes the transportation threshold analysis prepared on behalf of the Crystal Ridge subdivision proposed within the City of Spokane. The purpose of this memorandum is to review the transportation impacts of a proposed residential development on State and City roadways and recommend improvements to ensure safe and sufficient mobility, as needed. The memorandum can be used to support environmental reviews (SEPA support), a transportation concurrency determination, and design approval processes.

This study will be submitted to the City of Spokane as the lead land use jurisdiction and the Washington State Department of Transportation (WSDOT) as an impacted agency. Additional agencies can comment per invitation of staff from the City of Spokane. Questions regarding the proposed land use action can be addressed by MHE Engineering. Questions about this study can be addressed by T-O Engineers.

1. PROJECT DESCRIPTION

The Crystal Ridge Second Addition project involves the development of a 56-lot subdivision on a 14.25-acre parcel generally situated west of U.S. Route 195 and south of 16th Avenue in Spokane. The plat is in the southern half of the northwestern quarter of section 25, township 25 north, range 42 east, W.M. lying easterly of the Spokane, Portland and Seattle Railroad Company right of way and westerly of the abandoned Union Pacific Railroad right of way. The address of the development is 2500 W 17th Ave, Spokane, Washington 99201. The development is zoned as residential – single family (RSF). The property is owned by Mr. Konstantin Vasilenko at Spokane.

The site is to be developed with lot sizes ranging from 4,100 to 11,300 square-feet. The density of units on this development is 3.93 units per acre. Access to the property will be gained through a connection to Nettleton Lane. Additionally, a connection will be made to Cochran Street on the northeast end of the site. The Cochran Street connection will be used as emergency access only. Nettleton Lane extends north to 16th Avenue where project trips can distribute to U.S. Route 195 or other City streets to access the region.

The project would be developed in phases with completion and full occupancy anticipated by year 2024. **Figure 1** provides a site location map. **Figure 2** provides the current site plan for the Crystal Ridge development. The site plan is subject to some change throughout design. The conclusions of this study should be adequate so long as the number of units do not increase substantially, nor the number or location of proposed site access does not differ substantially from what is planned.

An increase of more than six (6) dwellings on the site would increase the travel demands of this project by 10%, warranting further study. A decrease in dwellings should not impact the conclusions as the number of trips decrease; therefore, making the conclusions "worst case". This analysis is conservative in assumptions and predictions.

2. ANALYSIS SCOPE AND METHODOLOGY

WSDOT staff required that a transportation threshold determination be provided for this project, as opposed to a trip generation and distribution letter only, or a full traffic impact analysis (TIA). A transportation threshold study is an abridged TIA structured to address the most relevant impacts of a new development, typically at one or two adjacent or off-site intersections. In this situation, the project will primarily impact the off-site intersections of 16th Avenue / U.S. Route 195 and Sunset Boulevard / Government Way, as identified per coordination with City and WSDOT staff. Another difference, as compared to a TIA, is the threshold study tends to focus mostly on traffic conditions with minimal review provided for non-motorized facilities. Crash statistics are also not addressed in the threshold study.

The analysis was performed based on a review of forecast AM and PM peak hour traffic volumes. The AM and PM peak hours are the highest hours of travel demand along 16th Avenue / U.S. Route 195 and Sunset Boulevard / Government Way. The analysis was prepared for year 2024 as the project will be complete by this forecast horizon.

Methodology – Intersection Operations

Congestion and increased vehicle delays are experienced more rapidly at intersections versus road segments (between intersections) due to the number and frequency of potential conflicts (e.g., turning vehicles and stopping or slowing movements). For this reason, intersection operations/capacity normally provide a basis for a threshold determination, with conditions measured in terms of levels of service (LOS). LOS represents the performance of an intersection from the motorist's perspective. LOS analysis is effective in understanding the performance of an intersection with respect to the individual user and the amount of time they will spend waiting to travel through the intersection, or in accessing a roadway from a stopped approach.

LOS methodologies are derived from the *Highway Capacity Manual* (Transportation Research Board, 2016). The *Highway Capacity Manual* (HCM) is a nationally recognized and locally accepted method of measuring traffic flow and congestion for intersections and driveways. Criteria range from LOS A, indicating free-flow conditions with minimal vehicle delay, to LOS F, indicating congestion with significant vehicle delay. LOS are differentiated via control delay thresholds.

LOS for a signalized intersection is defined in terms of the average control delay experienced by all vehicles at an intersection, typically over a specified time such as a peak hour. LOS at a *fourway* stop-controlled intersection is also defined by the average control delays experienced by all vehicles at the intersection within the specified timeframe. LOS for a *two-way* stop-controlled intersection is a function of the average control vehicle delay experienced by an approach or approach movement over a time interval. Typically, the stopped approach or movement experiencing the worst LOS is reported for the intersection.

Table 1 outlines the LOS criteria for signalized and unsignalized intersections from the *Highway Capacity Manual*. As shown, LOS thresholds, as a function of delay, vary between signalized and unsignalized intersections. This is because driver tolerances for delay have been documented to be much higher at signalized versus unsignalized intersections.

Table '	1. Intersection Level of	f Service Criteria
Levels of Service	Signalized Control Delay (sec/veh)	Unsignalized Control Delay (sec/veh)
А	≤10	≤10
В	>10 – 20	>10 - 15
С	>20 – 35	>15 - 25
D	>35 – 55	>25 - 35
E	>55 – 80	>35 - 50
F	> 80	>50
		-

City and WSDOT officials have established LOS D as the minimum acceptable level for signalized intersections and LOS E for unsignalized intersections in this area of Spokane, including along U.S. Route 195. LOS was determined using Synchro 11, a software module from Trafficware®. This software tool utilizes the methodologies of HCM and is a standard industry software package. See the Technical Appendix for the LOS reports generated by Synchro.

3. FORECAST TRAFFIC VOLUMES

Intersection turn movement counts were collected on June 10th, 2021, for the Sunset Boulevard / Government Way intersection and June 11th for the U.S. Route 195 / 16th Avenue intersection. The two counts are recent enough to be considered useful and reflective of real-life conditions for this study. Counts were performed between 7:00 to 9:00 AM and 4:00 to 6:00 PM, with the AM and PM peak hours of the intersection identified from counts and used with the capacity analysis.

Figure 3 provides a summary of the current AM and PM peak hour traffic volumes at the study intersections of Sunset Boulevard / Government Way / U.S. Route 195 at 16Th Avenue. Counts were taken after Governor Jay Inslee reopened Washington State to Phase III control, rescinding many of the full business restrictions associated with the COVID-19 pandemic. Traffic demands did decrease substantially at the onset of the pandemic but have predominantly normalized since about February/March of 2021. The Phase III determination predominantly normalized lingering traffic impacts; as such, no adjustments were applied to counts to address pandemic conditions.

Year 2024 forecasts account for baseline traffic growth, the trip assignments associated with the Crystal Ridge development, and the assignments associated with an anticipated pipeline project (detailed in *Pipeline Project* below). A summary of these forecasts elements is discussed in the following subsections.

Baseline Traffic Growth

Baseline traffic growth refers to the increase of through traffic not typically associated with specific land use developments. Typically, this growth is anticipated from factors such as through traffic growth due to development outside a project study area, the construction of individual homes and small business on lots, and other similar traffic growth motivators. Baseline growth is forecast with the use of annual growth rates, identified as described below. This growth rate was applied to existing traffic volumes to generate baseline year 2024 forecasts for the AM and PM peak hours.

The City and WSDOT maintain historical traffic counts for arterials and highways, respectively. Available historical counts were reviewed for 10 years extending 2009 to 2019 for stations around the Sunset Boulevard / Government Way and U.S. Route 195 / 16th Avenue intersections. The review indicates traffic has increased at within the 2% to 3% range annually, on average, over the last ten years on all but U.S. 395. However, there is substantial development yet anticipated off

the Highway within the City (For instance, Eagle Ridge west of U.S. 195 and Spokane South Hill as accessed by Hatch Road, etc.). As such, a 3% annual growth rate was applied to create a 9.3% total increase in traffic by 2024, as the result of this baseline growth rate application. This growth rate is also anticipated to address any potential lingering count adjustments remaining from COVID-19 impacts.

Pipeline Project

A concurrently developing pipeline project has been approved by local agencies for construction but has yet to generate trips to be reflected in counts. It is important to address these projects in forecasts, specifically, as they are certain to generate trips that impact a study area, in this case the Sunset Boulevard / Government Way and 16th Avenue / U.S. Route 195 intersections.

One pipeline project is considered in the analysis of impacts due to the Crystal Ridge subdivision. Wheatland Estates, a proposed development in Spangle, Washington will have noticeable impact with regard to study intersections. The project applicant proposes the development of 50.54 acres, as occupied by 197 single family residential lots. The site is proposed to be accessed from the south by three roads. Two access roads along Cheney-Spangle Road and one access road as a proposed extension of Terra Firma Road. The site is proposed to be accessed from the east by two connections to U.S. Route 195.

The Wheatland Estates project is proposed to be completed in year 2025 but may be completed earlier due to construction schedule and permitting. This threshold determination considers the Wheatland Estates project to be completed by 2024, to generate conservative analysis results. Per a TIA prepared by Whipple Consulting Engineers in 2019, the project is expected to generate 146 trips in the AM peak hour with 196 trips generated during the PM peak hour. About 35% of these trips are expected to travel U.S. Route 195. **Figure 4** shows the project assignments anticipated by the Wheatland Estates pipeline project at study intersections.

Note that the Wheatland Estates TIA indicates that 16th Avenue and U.S. Route 195 is already operating below acceptable level of service currently. The TIA recommended improvements to this intersection to reduce congestion and preserve intersection safety, described subsequently.

Trip Generation

Trip generation was forecast based on the methodologies of the Trip Generation Manual (ITE, 10th Edition, 2017). Trip Generation is a nationally recognized and locally accepted resource for forecasting traffic for commercial, institutional, and residential developments. The methods were developed based on the survey of other existing land uses located within the U.S.

Trip generation was developed using ITE Land Use Code 210. Trip totals were calculated based on the number of single-family homes, as this is the method described in the Trip Generation Manual. Trip generation was forecast for the AM and PM peak hours of adjacent street traffic, representing the impacts of the project upon the morning and evening rush hours of commute traffic. **Table 2** provides a summary of trip generation for the 2024 occupancy year of the project.

Table 2. Trip Generation P	Table 2. Trip Generation Potentials, Crystal Ridge Development, Year 2024											
AM Peak Hour PM Peak Hour												
Land Use	Weekday	In	Out	Total	In	Out	Total					
Total Trips (56 single-family detached homes)	610	11	34	45	35	21	56					
Source: Trip Generation manual (ITE, 2017)												

As shown, 610 weekday trips are forecast with this development. About 45 of these trips are generated during the AM peak hour and 56 during the PM peak hour. These peak hourly trips would comprise 17% of total weekday trips.

Trip Distribution and Assignment

Trip distribution and assignment is the process of forecasting likely travel routes for developmentrelated traffic, as to identify the impacts upon area streets. For this study, an assessment of origins and destinations was initially performed based on a review of average daily traffic (ADT) counts (i.e., travel densities) and an understanding of land uses within relation to the site. Also, known congestion issues were reflected in assessments, in particular, the difficulties of performing an eastbound left-turn from 16th Avenue to northbound U.S. Route 195, combined with a problematic merge of northbound U.S. Route 195 to eastbound I-90 traffic due to a short ramp junction.

In terms of counts, U.S. Route 195 supports 24,000 ADT at 16th Avenue and Sunset Boulevard nearly 15,000 ADT at Government Way, with Government Way supporting about 10,000 ADT north of the Sunset Boulevard. Thus, trips were initially proportioned to these routes based on a comparison of ADT travel densities. However, most trips are expected to travel to/from downtown Spokane or the I-90 corridor for the work commute. Though the shortest and most traveled route overall is U.S. Route 195, the use of Sunset Boulevard presents less congestion for residences of this area and will be used due to perceived travel time and safety benefit. The loss in travel time occurs specifically because of complications with eastbound left-turns from 16th Avenue onto northbound U.S. Route 195, and because of the ramp merge of northbound U.S. Route 195 to eastbound I-90. The following trip distributions were used given this understanding:

- Sunset Boulevard West. About 10% of project trips are forecast to approach and depart the study area via Sunset Boulevard west of Government Way during the AM and PM peak hours. This reflects travel to/from commercial and service centers located along U.S. Route 2 as well as employment centers such as the City of Airway Heights and Fair Child Airforce base.
- Sunset Boulevard East. About 45% of project trips will depart and 20% approach the development traveling Sunset Boulevard east of Government Way during the AM and PM peak hours. This reflects travel to/from the work, commercial, and service centers that are accessible within the City of Spokane.
- Government Way North. About 15% of project trips are forecast to approach and depart the study area via Government Way north of Sunset Boulevard during the AM and PM peak hours. This reflects travel to/from the work, commercial, and service centers that located within north Spokane.
- U.S. 195 North. About 20% of project trips will depart and 45% approach the development traveling U.S. 195 north of 16th Avenue during the AM and PM peak hours (distributions overall and not with J-Turn impact discussed subsequently). This reflects travel to/from the work, commercial, and service centers that are accessible within the City of Spokane and along I-90.
- U.S. 195 North. About 10% of project trips will depart and approach the development traveling U.S. 195 south of 16th Avenue between the AM and PM peak hours (distributions overall and not with J-Turn impact discussed subsequently). This reflects travel to/from the work, commercial, and service centers that are accessible along U.S. 195, with areas of the Cheney-Spokane interchange and access to the City of Cheney being examples.

Trips were assigned to study roadways based on the described distribution patterns. **Figure 5** provides a summary of project trip assignments for the AM and PM peak hours. Per WSDOT request (identifying impacts), a total of 7 AM peak hour and 3 PM peak hour project trips are forecast to turn left onto U.S. Route 195 at 16th Avenue (eastbound to northbound), and then use the I-90 on-ramp from U.S. Route 195 (northbound to westbound) during the typical weekday. However, these trips will be redirected such that no trips are expected to turn left onto U.S. Route 195 nor impact the northbound merge ramp at I-90 with the provision of the left-turn restrictions discussed with Section 4 subsequently.

Year 2024 Forecasts

Pipeline project trips were combined with baseline traffic growth forecasts to generate non-project forecasts. A summary of year 2024 without project peak hour traffic volumes is shown with **Figure 6.** Understanding the "before and after" forecast of a project is important in conceptualizing the impact that the development will have on the transportation system at given study intersections.

Without-project forecasts and project trip assignments were combined to generate the year 2024 with-project forecasts shown with **Figure 7** for the AM and PM peak hours. In summary, year 2024 traffic forecasts are comprised of: baseline growth, the trips generated by the Wheatland Estates pipeline project, and the trips generated by the Crystal Ridge development.

The forecasting process described above results an approximate 12% increase in total entering volumes (TEV) over 2021 traffic counts during both peak hours, averaging just under 4% annual growth over three years. The purpose of this analysis is to show that conservative traffic forecasts were developed for the capacity/LOS analyses. It is likely that true background traffic growth will be lower than the 3% used in this analysis.

4. ROADWAY NETWORK

This study provides an analysis of capacity and mobility for the two off-site intersections. Sunset Boulevard and Government Way are principal arterials that connect that access residential and commercial areas and provide connectivity between areas inside and outside of the city.

- **Government Way** has two northbound and two southbound travel lanes at the Sunset Boulevard Intersection. The posted speed limit is 30 miles per hour. There are northbound and southbound left-turn lanes at this signalized intersection, working on permitted leftturn phasing (shared movements with through-traffic). Government Way is designated Lindeke Street south of the Government Way intersection.
- **Sunset Boulevard** has eastbound and westbound left-turn lanes with protected/exclusive allowances, also with right turn lanes on both approaches. There are two through lanes in the westbound direction and only one in the eastbound direction with bike lanes. Sunset Boulevard has a posted speed limit of 30 miles per hour around the signaled intersection.

16th Avenue is a minor arterial that extends from Lindeke Street to U.S. Route 195.

• **16**th **Avenue** has one lane of travel in both directions (two-lane road) with a posted speed limit of 25 miles per hour. Left, through, and right-turn movements are shared from single approach lanes at U.S. Route 195. Traffic must cross two highway lanes to cross or turn left onto U.S. Route 195.

U.S. Route 195 is an urban freeway that extends from I-90 to the Washington-Idaho border.

 U.S. Route 195 is a divided highway with two northbound and two southbound lanes for directional travel. The posted speed limit is 55 miles per hour. There are northbound and southbound left-turn lanes on both approaches at the 16th Avenue intersection with space

for one eastbound and one westbound queued vehicle, respectively, in the median opening between travel lanes.

Per coordination with WSDOT and City engineers, it has been confirmed that a group of private developers are working to implement improvements that mitigate LOS and safety issues at the 16th Avenue and U.S. Route 195 intersection. Improvements will restrict eastbound through and left-turn traffic by construction of a concrete island allowing right-turn movements only. Redirected eastbound left-turns and through movements would access the City of Spokane by the Sunset Highway / Government Way intersection. An acceleration lane would be constructed to help any lingering right-turn travelers merge with southbound U.S. Route 195. In addition to intersection LOS and safety benefits, this improvement would also pull traffic away from the northbound U.S. Route 195 on-ramp with eastbound I-90, which has a bottleneck issue.

Noted subsequently, the Crystal Ridge project will participate in this improvement as a mitigating condition for LOS/safety impacts. However, the timing for this improvement may fall beyond the build-year of Crystal Ridge. As such, an alternative analysis was performed both without and with improvements to assure both potential conditions are addressed.

The alternative analysis assumes left-turn and through traffic, as generated by the Crystal Ridge project and other existing developments, would be redirected from this approach to the Sunset Highway and Government Way intersection to access the City of Spokane. **Figure 8** shows year 2024 peak hour forecasts assuming the redirection of traffic resulting from island construction.

5. OPERATIONS/CAPACITY

Traffic operations/capacity were quantified for Sunset Boulevard / Government Way and U.S. Route 195 / 16th Avenue based on year 2024 with-project forecasts for the AM and PM peak hours. **Table 3** provides a summary of LOS results. Existing LOS are shown for comparison. LOS worksheets have been attached to this memorandum for further review. The with-project condition shows LOS for the U.S. Route 195 intersection without and with development of turn restrictions. Without-project LOS are attached, though they have not been represented in the table below.

Again, LOS and delay are the function of the worse approach or approach movement for a one or two-way stop-controlled intersection, which is the control-type of the U.S. Route 195 / 16th Avenue intersection. In this case, the LOS and delay being reported for eastbound approach as this is what is being impacted by project trips and the proposed improvement discussed previous. LOS is the functional of all control delays for a signalized intersection.

	Table 3. Level of Service Summary												
		Existing	(2021)		Fu	ture With-F	Project (202	24)					
	AM Pea	k Hour	PM Pea	ak Hour	AM Pea	ak Hour	PM Peak Hour						
Intersection Location	LOS ¹	Delay ²	LOS ¹	Delay ²	LOS ¹	Delay ²	LOS ¹	Delay ²					
Sunset Hwy / Government Way - Without Modifications - With Modifications	B 	16.0 	B 	16.8 	B B	17.5 19.3	B B	18.7 19.4					
U.S. Route 195 & 16 th Avenue - Without Modifications ³ - With Modifications ³	58.2 	E C	41.6 22.1	F C	143.6 22.9								
1. LOS = Level of Service 2. Delay = Total delay signals, approach delay TWSC. 3. LOS reported for EB Approach													

As shown, the Sunset Boulevard / Government Way intersection currently operates in the LOS B range during both peak hours. Operations are maintained at LOS B between peak hours with-project development, which is acceptable per City standard for signalized intersections. U.S. Route 195 / 16th Avenue currently functions at LOS D during the AM peak hour and LOS F during the PM peak hour, indicating capacity failure (due to PM peak hour LOS). City of Spokane and WSDOT require LOS E or better conditions for unsignalized intersections, which corresponds with a delay of less than 50 seconds.

Without improvements, the intersection falls to LOS E during the AM peak hour, still acceptable per agency guidelines, and a worsened LOS F condition during the PM peak hour, shown with over a 100-seconds of increased average control delay. A comparison with the attached LOS worksheets indicates the project would be responsible for a 33-second increase in average vehicle delays during the PM peak hour, but this impact is overstated. Delays increase almost exponentially when high LOS F conditions are reach for a stop-controlled approach. Comparatively, the project causes less than a 5-second increase in average control delay for the approach during the AM peak hour, a more representative impact measurement for the project.

The turn restrictions would elevate AM and PM peak hour conditions back to acceptable LOS range. This analysis affirms the need for turn restrictions to help with mobility and safety at the U.S. Route $195 / 16^{th}$ Avenue intersection.

6. SUMMARY AND RECOMMENDATIONS

Crystal Ridge is a 56-home subdivision proposed on 14.25-acres east of 16th Avenue and west of U.S. Route 195 in Spokane, forecast for construction and full occupancy by year 2024. The development is anticipated to generate 45 AM peak hour trips, 56 PM peak hour trips, and 610 total weekday trips. Most project trips are expected to/from the Spokane via U.S. Route 195 and Sunset Boulevard throughout the day, with a differential of inbound and outbound travel expected due to operational issues associated with eastbound left-turns from 16th Avenue onto northbound U.S. Route 195, with the U.S. Route 195 / I-90 northbound to eastbound interchange merge.

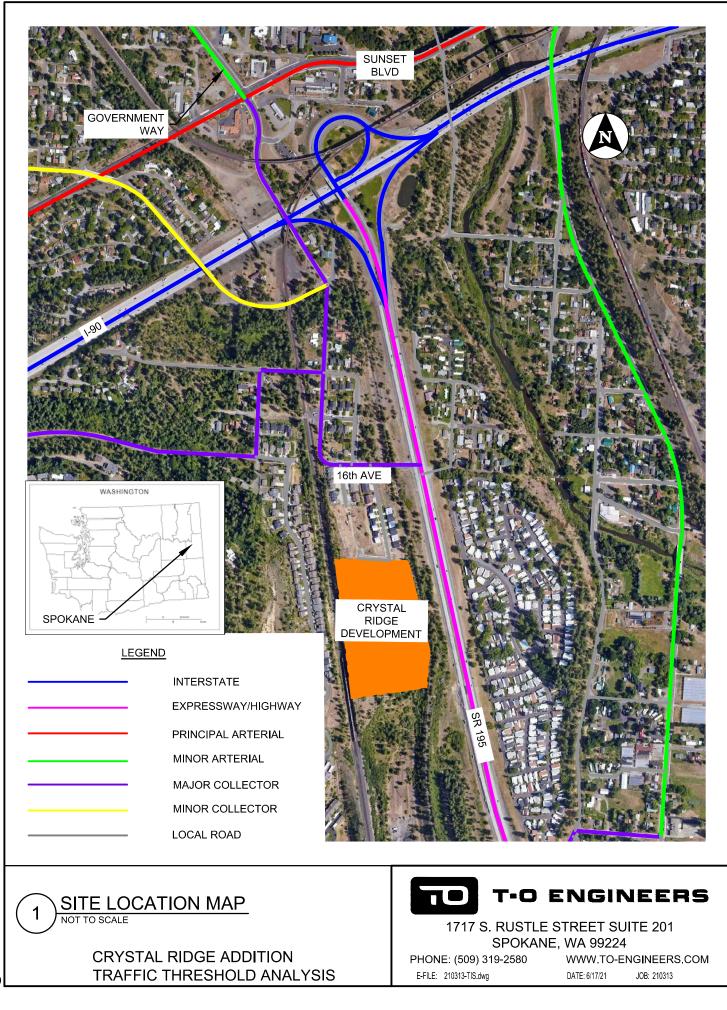
Two intersections were reviewed for this threshold analysis, Sunset Boulevard / Government Way and U.S. Route 195 / 16th Avenue. The Sunset Boulevard / Government Way intersection currently functions within acceptable City capacity allowances and should continue to operate acceptably through year 2024 following the development of Crystal Ridge, construction of a pipeline project, and including conservative baseline (not development) growth. This conclusion is maintained with the redirection of traffic from the U.S. Route 195 / 16th Avenue intersection with turn restrictions.

U.S. Route 195 / 16th Avenue currently functions at LOS F during the PM peak hour, which is not acceptable per City and WSDOT guidelines, with conditions worsening by year 2024 with traffic growth. The project would only decrease delays at a preexisting, failing intersection.

A group of private developers have coordinated to promote an improvement that addresses LOS and safety issues at the U.S. Route 195 / 16th Avenue intersection. The strategy is defined with "Conditions of Approval" documentation for Wheatland Estates, proposed in the Town of Spangle. However, other developers have volunteered participation in this improvement as conditions of their respective projects, so they may also continue development. The Crystal Ridge owner has agreed to this condition as well to allow for site development.

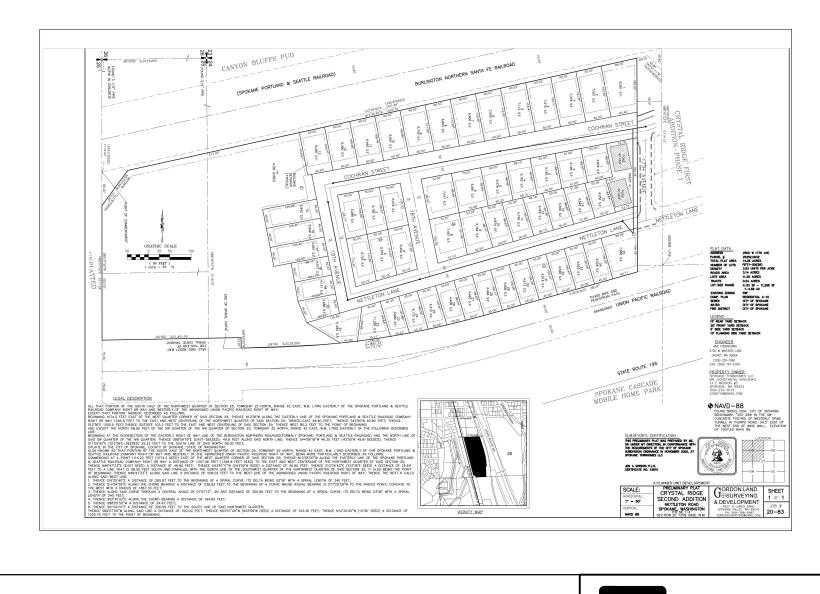
The strategy reflects restriction of eastbound left-turns and through movements at the 16th Avenue intersection onto northbound U.S. Route 195. Travelers along the west side of U.S. Route 195 would more conveniently take the Lindeke Street (Government Way) and Sunset Boulevard Route into the City, which redirects the critical left turn volumes from the intersection, mitigating the LOS and safety issue. A benefit is this also reduces traffic from the northbound U.S. Route 195 merge onto eastbound I-90, addressing concerns WSDOT staff has for this junction over safety.

As indicated, Crystal Ridge would participate in the improvements above to address impacts, as assessed through a mitigation participation fee identified through the Wheatland development conditions. WSDOT and the City will condition that Crystal Ridge may not final plat any lots until a financial commitment is in place (secured by a letter of credit or bond) between all developers, the City of Spokane, and WSDOT. The City will allow this mitigation to be a credit against transportation impact fees (TIF's) per SMC 17D.075.070.


Note without the left-turn restriction project, the project would assign 7 AM peak hour and 3 PM peak hour project trips to left turns at the U.S. Route 195 / 16th Avenue intersection, and then by extension use the I-90 on-ramp from U.S. Route 195 (northbound to westbound). However, these trips will be redirected such that no trips are expected to turn left onto U.S. Route 195 nor impact the northbound merge ramp at I-90 with the provision of the left-turn restrictions. This information was quantified specifically by this summer per requests of WSDOT.

Recommendations

The Crystal Ridge transportation threshold determination confirms the project can be developed without substantially impacting traffic conditions on City or WSDOT roadways. The following are recommendations to address project impacts:


- Crystal Ridge share in improvement planned by private interests at the U.S. Route 195 and 16th Avenue intersection ("Project Mitigation"). Crystal Ridge may not final plat any lots until a financial commitment is in place (secured by a letter of credit or bond), which has been approved by the City and WSDOT, which shall be under contract for construction within one year from recording of the final plat.
- The applicant's contributions to funding the design and construction of the mitigation project will qualify for a credit against transportation impact fees per SMC 17D.075.070.
- Develop frontage improvements as specified by the City of Spokane.

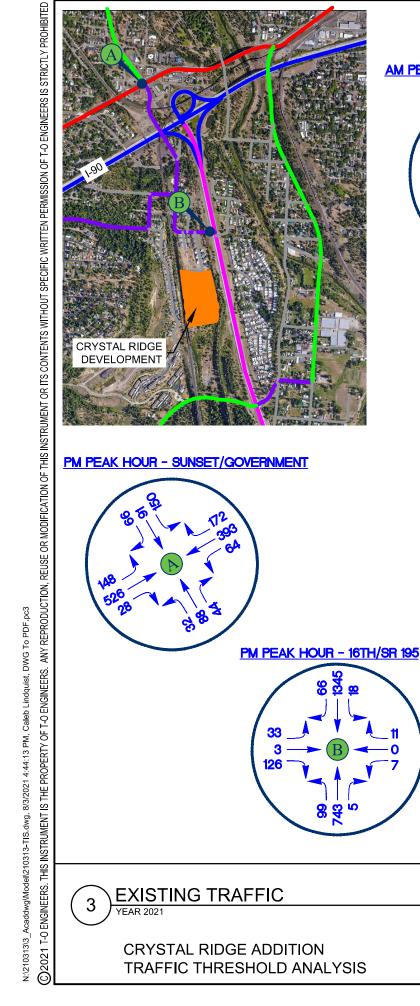
This determination should sufficiently support environmental or concurrency determination of the city, and/or the site design process. No additional studies are recommended. Please contact our office with questions.

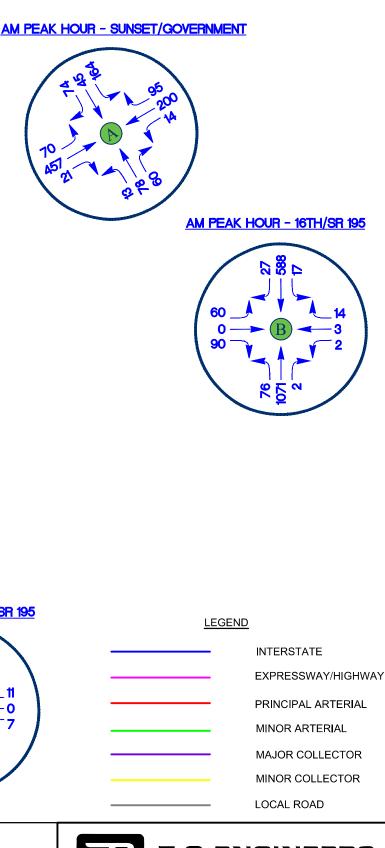
N:\210313\3_Acaddwg\Mode\\210313-TIS.dwg, 8/3/2021 4:42:58 PM, Caleb Lindquist, DWG To PDF.pc3

©2021 T-O ENGINEERS. THIS INSTRUMENT IS THE PROPERTY OF T-O ENGINEERS. ANY REPRODUCTION, REUSE OR MODIFICATION OF THIS INSTRUMENT OR ITS CONTENTS WITHOUT SPECIFIC WRITTEN PERMISSION OF T-O ENGINEERS IS STRICTLY PROHIBITED

2)SITE PLAN NOT TO SCALE

> CRYSTAL RIDGE ADDITION TRAFFIC THRESHOLD ANALYSIS


T-O ENGINEERS

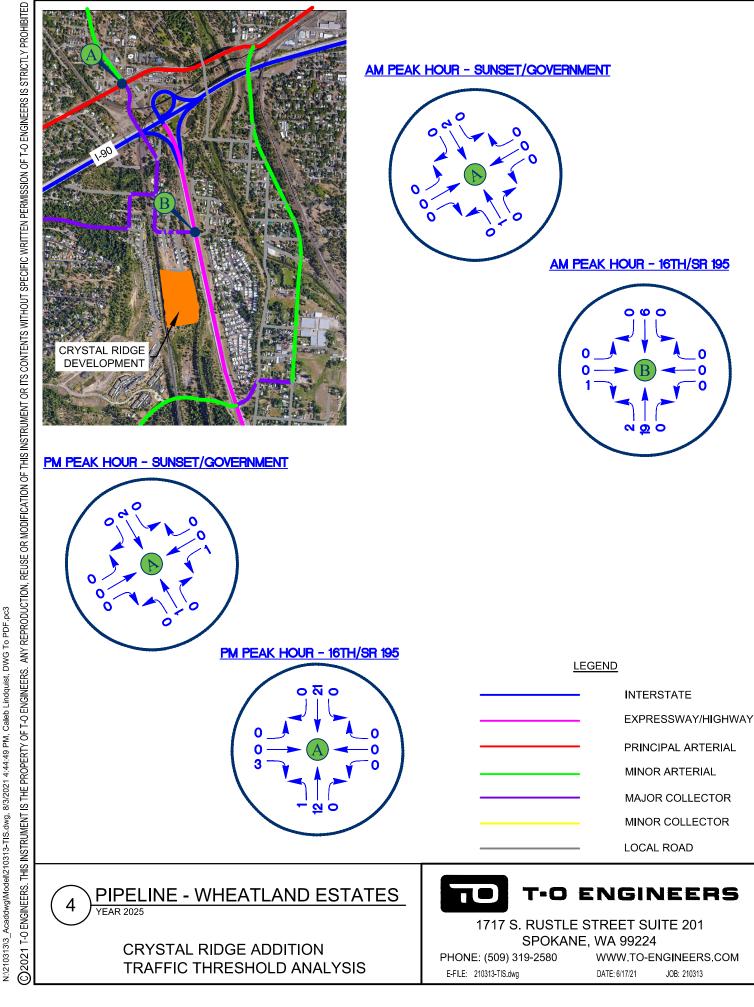


 1717 S. RUSTLE STREET SUITE 201 SPOKANE, WA 99224

 PHONE: (509) 319-2580
 WWW.TO-ENGINEERS.COM

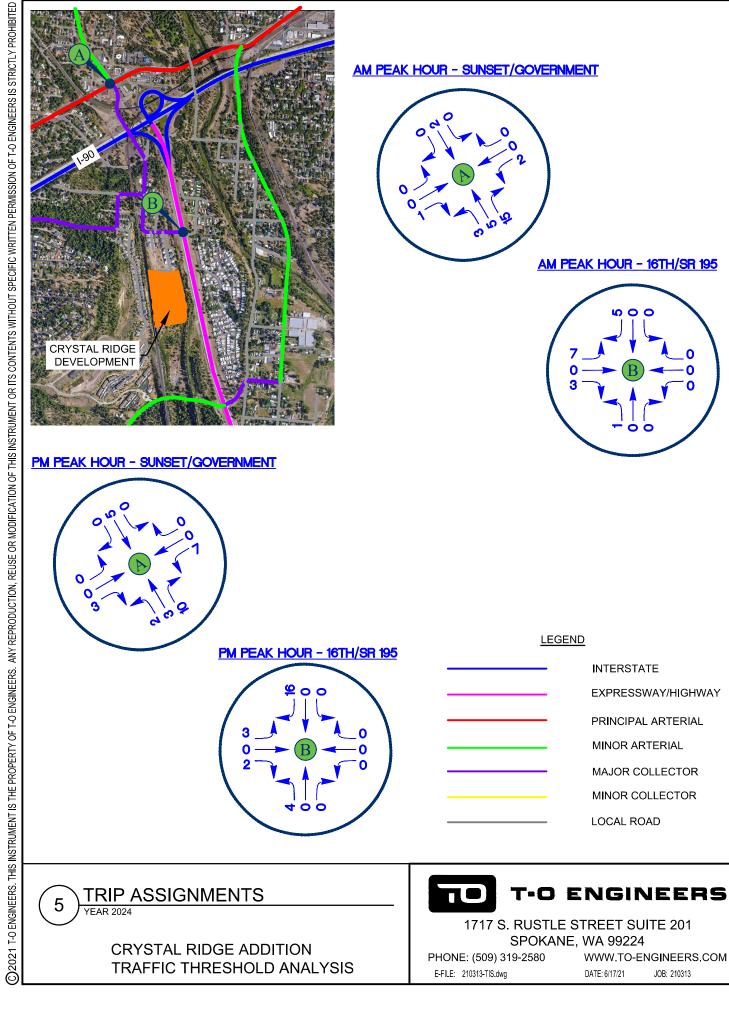
 E-FILE: 210313-TIS.dwg
 DATE: 6/17/21
 JOB: 210313

110

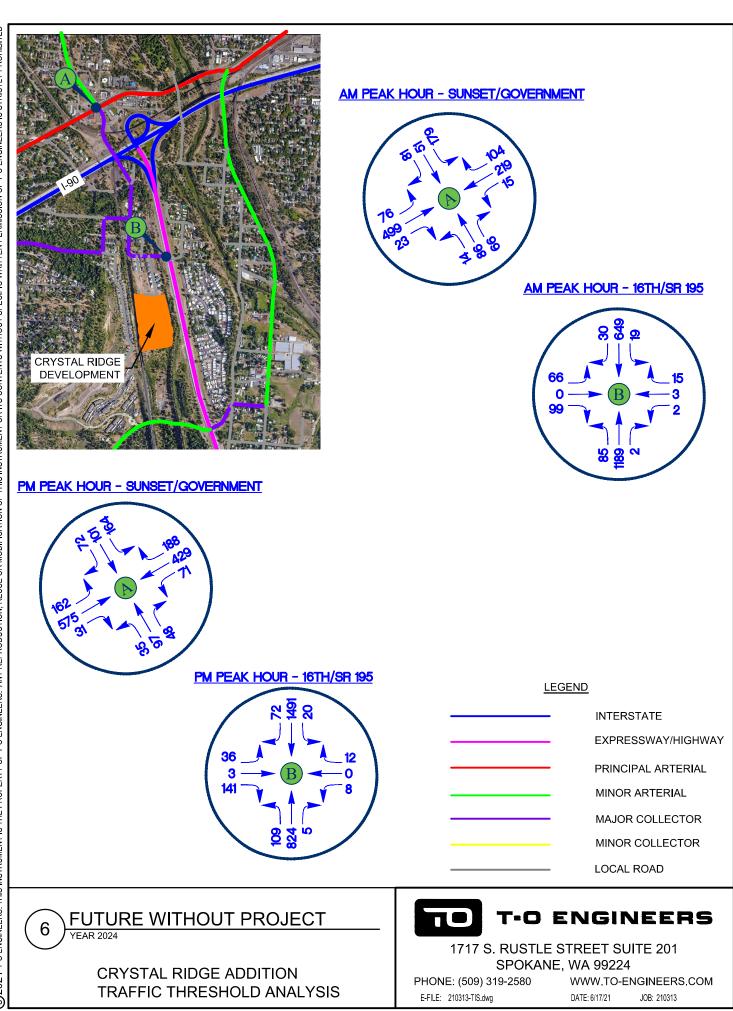

T-O ENGINEERS

1717 S. RUSTLE STREET SUITE 201 SPOKANE, WA 99224 PHONE: (509) 319-2580

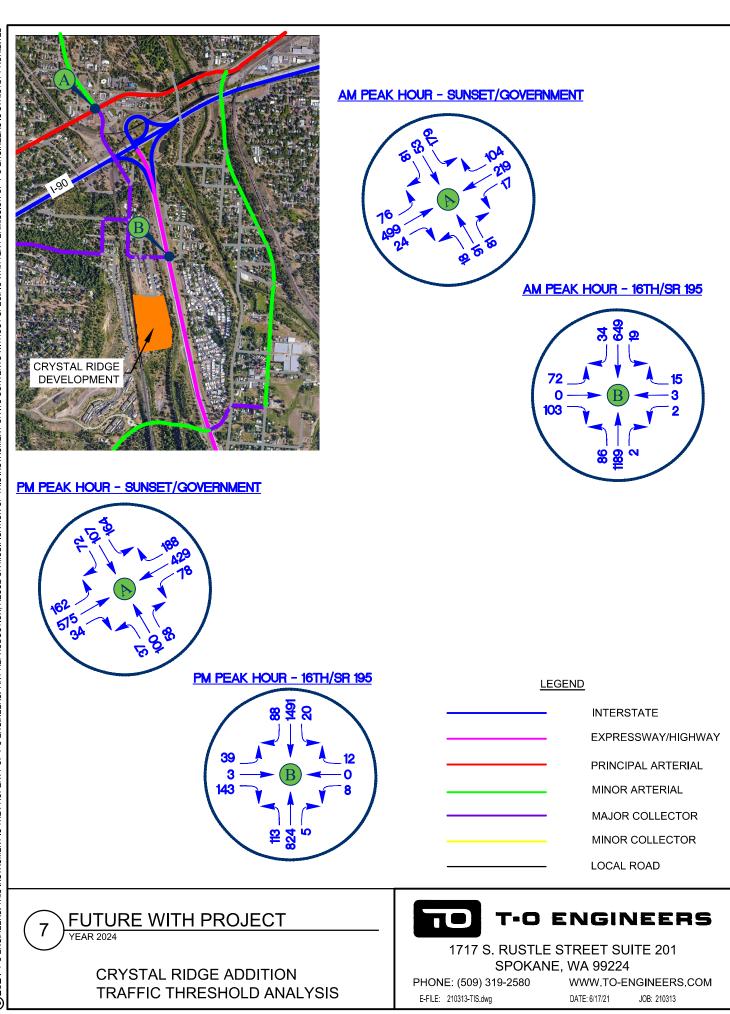
E-FILE: 210313-TIS.dwg


C

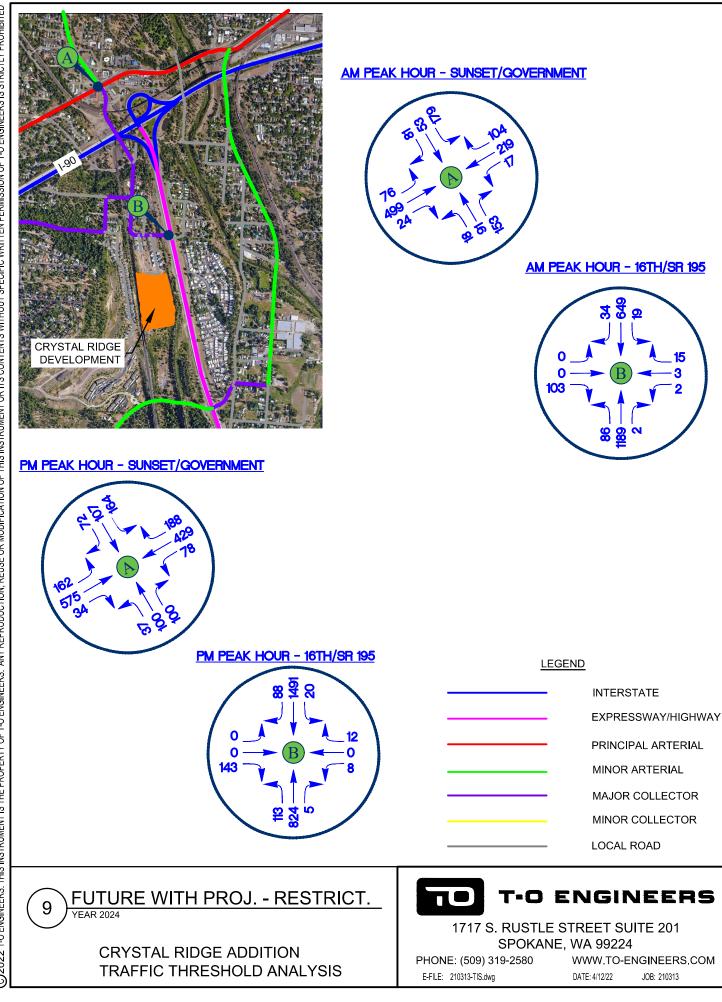
WWW TO ENGINEERS COM DATE: 6/17/21 JOB: 210313



WWW TO ENGINEERS COM JOB: 210313


n

n



N:\210313\3_Acaddwg\Model\210313-TIS.dwg, 8/3/2021 4:46:03 PM, Caleb Lindquist, DWG To PDF.pc3

© 2021 T-0 ENGINEERS. THIS INSTRUMENT IS THE PROPERTY OF T-0 ENGINEERS. ANY REPRODUCTION, REUSE OR MODIFICATION OF THIS INSTRUMENT OR ITS CONTENTS WITHOUT SPECIFIC WRITTEN PERMISSION OF T-0 ENGINEERS IS STRICTLY PROHIBITED

N:\210313\3_Acaddwg\Model\210313-TIS.dwg, 8/3/2021 4:46:26 PM, Caleb Lindquist, DWG To PDF.pc3

N:\210313\3_Acaddwg\Mode\\210313-TIS.dwg, 4/12/2022 5:32:35 PM, Bill White, DWG To PDF.pc3

HCM 6th Signalized Intersection Summary 1: Government Way & Sunset Blvd

1: Government Way				07/23/2021								
	a oui	ISCI DI	vu			isting A					0.72	
	≯	-	\mathbf{r}	4	-	*	1	Ť	1	1	Ŧ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	•	1	1	<u></u>	1	ľ	A		ľ	∱î ≽	
Traffic Volume (veh/h)	70	457	21	14	200	95	13	78	60	164	45	74
Future Volume (veh/h)	70	457	21	14	200	95	13	78	60	164	45	74
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1841	1841	1841	1841	1841	1841	1841	1841	1841	1841	1841	1841
Adj Flow Rate, veh/h	74	486	22	15	213	101	14	83	64	174	48	79
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	4	4	4	4	4	4	4	4	4	4	4	4
Cap, veh/h	208	643	543	207	1186	527	399	485	341	400	433	385
Arrive On Green	0.12	0.35	0.35	0.12	0.34	0.34	0.25	0.25	0.25	0.25	0.25	0.25
Sat Flow, veh/h	1753	1841	1553	1753	3497	1553	1240	1960	1378	1219	1749	1554
Grp Volume(v), veh/h	74	486	22	15	213	101	14	73	74	174	48	79
Grp Sat Flow(s),veh/h/ln	1753	1841	1553	1753	1749	1553	1240	1749	1589	1219	1749	1554
Q Serve(g_s), s	2.0	11.8	0.5	0.4	2.2	2.3	0.5	1.7	1.9	6.6	1.1	2.0
Cycle Q Clear(g_c), s	2.0	11.8	0.5	0.4	2.2	2.3	2.5	1.7	1.9	8.5	1.1	2.0
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.87	1.00		1.00
Lane Grp Cap(c), veh/h	208	643	543	207	1186	527	399	433	394	400	433	385
V/C Ratio(X)	0.36	0.76	0.04	0.07	0.18	0.19	0.04	0.17	0.19	0.44	0.11	0.21
Avail Cap(c_a), veh/h	537	1062	896	554	2074	921	764	947	860	758	947	841
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	20.5	14.5	10.9	19.8	11.8	11.8	16.1	14.9	15.0	18.4	14.7	15.1
Incr Delay (d2), s/veh	0.8	2.6	0.0	0.1	0.1	0.2	0.1	0.3	0.3	1.1	0.2	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/	ln 0.7	4.3	0.1	0.2	0.7	0.7	0.1	0.6	0.6	1.8	0.4	0.7
Unsig. Movement Delay,	s/veh											
LnGrp Delay(d),s/veh	21.3	17.1	10.9	19.9	11.9	12.1	16.1	15.2	15.3	19.4	14.9	15.5
LnGrp LOS	С	В	В	В	В	В	В	В	В	В	В	В
Approach Vol, veh/h		582			329			161			301	
Approach Delay, s/veh		17.4			12.3			15.3			17.7	
Approach LOS		В			В			В			В	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc),	S	17.1	10.5	23.0		17.1	10.0	23.5				
		4.0	4 5	* - 0		1.0	4.0	F 0				

Intersection Summary HCM 6th Ctrl Delay HCM 6th LOS

Max Green Setting (Gmax), s

Max Q Clear Time (g_c+l1), s

Change Period (Y+Rc), s

Green Ext Time (p_c), s

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

* 5.8

* 30

4.3

2.4

4.6

27.4

10.5

1.8

4.0

16.0

2.4

0.0

5.8

29.2

13.8

3.6

4.6

27.4

4.5

1.2

4.5

15.5

4.0

0.1

16.0

В

Int Delay, s/veh 2.7

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configuration	s	\$			4		5	_ ∱ î⊧		<u>ار ا</u>	_ ≜ î≽		
Traffic Vol, veh/h	60	0	90	2	3	14	76	1071	2	17	588	27	
Future Vol, veh/h	60	0	90	2	3	14	76	1071	2	17	588	27	
Conflicting Peds, #	/hr 0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	Free	
Storage Length	-	-	-	-	-	-	200	-	-	240	-	-	
Veh in Median Stor	age,-#	# 1	-	-	1	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	66	0	99	2	3	15	84	1177	2	19	646	30	

Major/Minor	Minor2		Ν	linor1		Μ	ajor1		Μ	ajor2			
Conflicting Flow	All1442	2029	323	1706	2029	589	646	0	-	1177	0	0	
Stage 1	684	684	-	1345	1345	-	-	-	-	-	-	-	
Stage 2	758	1345	-	361	684	-	-	-	-	-	-	-	
Critical Hdwy	7.54	6.54	6.94	7.54	6.54	6.94	4.14	-	-	4.14	-	-	
Critical Hdwy Sto	g 1 6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Critical Hdwy Sto	g 2 6.54	5.54	-	6.54	5.54	-	-	-	-	-	-	-	
Follow-up Hdwy	3.52	4.02	3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-	
Pot Cap-1 Mane	uver 93	57	673	59	57	452	935	-	0	589	-	0	
Stage 1	405	447	-	160	218	-	-	-	0	-	-	0	
Stage 2	365	218	-	630	447	-	-	-	0	-	-	0	
Platoon blocked,	%							-			-		
Mov Cap-1 Mane	euver80	50	673	46	50	452	935	-	-	589	-	-	
Mov Cap-2 Mane	euve r 86	134	-	115	136	-	-	-	-	-	-	-	
Stage 1	369	433	-	146	198	-	-	-	-	-	-	-	
Stage 2	316	198	-	520	433	-	-	-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control D	elay,2 s .4	19.4	0.6	0.3	
HCM LOS	D	С			

Minor Lane/Major Mvmt	NBL	NBTEBLnW	BLn1	SBL	SBT
Capacity (veh/h)	935	- 329	270	589	-
HCM Lane V/C Ratio	0.089	- 0.501	0.077	0.032	-
HCM Control Delay (s)	9.2	- 26.4	19.4	11.3	-
HCM Lane LOS	А	- D	С	В	-
HCM 95th %tile Q(veh)	0.3	- 2.7	0.2	0.1	-

HCM 6th Signalized Intersection Summary 1: Government Way & Sunset Blvd

07/23/2021

i	≯	-	\mathbf{F}	4	-	•	1	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	1	1	ľ	<u></u>	1	7	∱ î≽		ľ	A1⊅	
Traffic Volume (veh/h)	148	526	28	64	393	172	32	88	44	150	91	66
Future Volume (veh/h)	148	526	28	64	393	172	32	88	44	150	91	66
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	0.99		0.99	0.99		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885
Adj Flow Rate, veh/h	156	554	29	67	414	181	34	93	46	158	96	69
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	1	1	1	1	1	1	1	1	1	1	1	1
Cap, veh/h	224	706	598	204	1268	565	378	567	263	395	493	324
Arrive On Green	0.12	0.37	0.37	0.11	0.35	0.35	0.24	0.24	0.24	0.24	0.24	0.24
Sat Flow, veh/h	1795	1885	1595	1795	3582	1595	1219	2369	1100	1253	2058	1354
Grp Volume(v), veh/h	156	554	29	67	414	181	34	69	70	158	82	83
Grp Sat Flow(s),veh/h/ln	1795	1885	1595	1795	1791	1595	1219	1791	1677	1253	1791	1621
Q Serve(g_s), s	4.4	13.8	0.6	1.8	4.5	4.4	1.2	1.6	1.8	6.1	1.9	2.2
Cycle Q Clear(g_c), s	4.4	13.8	0.6	1.8	4.5	4.4	3.4	1.6	1.8	7.8	1.9	2.2
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.66	1.00		0.84
Lane Grp Cap(c), veh/h	224	706	598	204	1268	565	378	429	402	395	429	388
V/C Ratio(X)	0.70	0.78	0.05	0.33	0.33	0.32	0.09	0.16	0.17	0.40	0.19	0.21
Avail Cap(c_a), veh/h	526	1041	881	543	2033	905	718	928	870	744	928	840
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh		14.6	10.5	21.6	12.5	12.4	17.5	15.9	16.0	19.1	16.0	16.1
Incr Delay (d2), s/veh	2.9	3.2	0.0	0.7	0.2	0.5	0.1	0.2	0.3	0.9	0.3	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/		5.2	0.2	0.7	1.6	1.4	0.3	0.6	0.6	1.7	0.8	0.8
Unsig. Movement Delay,												
LnGrp Delay(d),s/veh	25.1	17.8	10.6	22.3	12.7	12.9	17.6	16.1	16.2	20.0	16.3	16.5
LnGrp LOS	С	В	В	С	В	В	В	В	В	В	В	B
Approach Vol, veh/h		739			662			173			323	
Approach Delay, s/veh		19.1			13.7			16.5			18.2	
Approach LOS		В			В			В			В	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc),		17.3	11.1	24.5		17.3	10.0	25.6				
Change Period (Y+Rc), s		4.6	4.5	* 5.8		4.6	4.0	5.8				
Max Green Setting (Gma		27.4	15.5	* 30		27.4	16.0	29.2				
Max Q Clear Time (g_c+	l1), s	5.4	6.4	6.5		9.8	3.8	15.8				
Green Ext Time (p_c), s		1.2	0.2	4.9		2.0	0.1	4.0				
Intersection Summary												
HCM 6th Ctrl Delay			16.8									
HCM 6th LOS			В									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

HCM Lane LOS

HCM 95th %tile Q(veh)

Int Delay, s/veh 4.8

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configuration	IS	\$			4		<u> </u>	_ ∱ î⊧		5	_ ≜î ≽		
Traffic Vol, veh/h	33	3	126	7	0	11	99	743	5	18	1345	66	
Future Vol, veh/h	33	3	126	7	0	11	99	743	5	18	1345	66	
Conflicting Peds, #	/hr 0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	Free	
Storage Length	-	-	-	-	-	-	200	-	-	240	-	-	
Veh in Median Stor	rage,-#	# 1	-	-	1	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	97	97	97	97	97	97	97	97	97	97	97	97	
Heavy Vehicles, %	1	1	1	1	1	1	1	1	1	1	1	1	
Mvmt Flow	34	3	130	7	0	11	102	766	5	19	1387	68	

Major/Minor	Minor2		Ν	linor1		Ν	lajor1		Μ	ajor2			
Conflicting Flow	All2012	2395	694	1703	2395	383	1387	0	-	766	0	0	
Stage 1	1425	1425	-	970	970	-	-	-	-	-	-	-	
Stage 2	587	970	-	733	1425	-	-	-	-	-	-	-	
Critical Hdwy	7.52	6.52	6.92	7.52		6.92	4.12	-	-	4.12	-	-	
Critical Hdwy Sto	g 1 6.52	5.52	-	6.52	5.52	-	-	-	-	-	-	-	
Critical Hdwy Sto	g 2 6.52	5.52	-	6.52	5.52	-	-	-	-	-	-	-	
Follow-up Hdwy	3.51	4.01	3.31	3.51	4.01	3.31	2.21	-	-	2.21	-	-	
Pot Cap-1 Mane	uver 35	34	388	60	34	618	495	-	0	850	-	0	
Stage 1	144		-	274	332	-	-	-	0	-	-	0	
Stage 2	465	332	-	381	201	-	-	-	0	-	-	0	
Platoon blocked	, %							-			-		
Mov Cap-1 Man	euv e r28	26	388	32	26	618	495	-	-	850	-	-	
Mov Cap-2 Man	euver87	111	-	92	73	-	-	-	-	-	-	-	
Stage 1	114	197	-	218	264	-	-	-	-	-	-	-	
Stage 2	362	264	-	244	197	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control De	elay.588.2			25.7			1.7			0.1			
HCM LOS	F			D									
Minor Lane/Majo	or Mvmt	NBL	NBTE	BLnWW	BLn1	SBL	SBT						
Capacity (veh/h)		495	-	222	192	850	-						
HCM Lane V/C		0.206	- (0.097(-						
HCM Control De		14.2			25.7	9.3	-						

Notes ~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

-

-

F

5.2

-

-

D

0.3

А

0.1

В

0.8

07/20/2021

	≯	-	\mathbf{r}	1	+	×	1	1	1	1	ţ	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	•	1	ሻ	††	1	۲.	A		5	≜ †}	
Traffic Volume (veh/h)	76	499	23	15	219	104	14	86	66	179	51	81
Future Volume (veh/h)	76	499	23	15	219	104	14	86	66	179	51	81
Number	3	8	18	7	4	14	5	2	12	1	6	16
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Adj Sat Flow, veh/h/ln	1827	1827	1827	1827	1827	1827	1827	1827	1900	1827	1827	1900
Adj Flow Rate, veh/h	81	531	24	16	233	111	15	91	70	190	54	86
Adj No. of Lanes	1	1	1	1	2	1	1	2	0	1	2	0
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	4	4	4	4	4	4	4	4	4	4	4	4
Cap, veh/h	190	669	566	190	1239	552	397	510	359	397	455	406
Arrive On Green	0.11	0.37	0.37	0.11	0.36	0.36	0.26	0.26	0.26	0.26	0.26	0.26
Sat Flow, veh/h	1740	1827	1547	1740	3471	1546	1216	1945	1371	1195	1736	1547
Grp Volume(v), veh/h	81	531	24	16	233	111	15	80	81	190	54	86
Grp Sat Flow(s), veh/h/ln		1827	1547	1740	1736	1546	1216	1736	1581	1195	1736	1547
Q Serve(g_s), s	2.4	14.3	0.5	0.5	2.5	2.7	0.5	2.0	2.2	8.1	1.3	2.4
Cycle Q Clear(g_c), s	2.4	14.3	0.5	0.5	2.5	2.7	2.9	2.0	2.2	10.2	1.3	2.4
Prop In Lane	1.00	14.5	1.00	1.00	2.0	1.00	1.00	2.0	0.87	1.00	1.5	1.00
Lane Grp Cap(c), veh/h	190	669	566	190	1239	552	397	455	414	397	455	406
V/C Ratio(X)	0.43	0.79	0.04	0.08	0.19	0.20	0.04	0.18	0.19	0.48	0.12	0.21
Avail Cap(c_a), veh/h	491	972	823	507	1898	845	686	867	789	680	867	772
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	22.8	15.5	11.2	22.0	12.2	12.2	17.0	15.7	15.7	19.7	15.4	15.8
Incr Delay (d2), s/veh	1.1	3.7	0.0	0.1	0.1	0.3	0.1	0.3	0.3	1.3	0.2	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.4
%ile BackOfQ(50%),veh/		7.8	0.0	0.0	1.2	1.2	0.0	1.0	1.0	2.8	0.0	1.0
LnGrp Delay(d),s/veh	24.0	19.2	11.2	22.1	12.3	12.5	17.0	15.9	16.1	2.0	15.6	16.2
LIGIP Delay(d), siven	24.0 C	19.2 B	B	22.1 C	12.3 B	12.5 B	н7.0 В	15.9 B	B	21.0 C	15.0 B	10.2 B
· · · · · · · · · · · · · · · · · · ·	0		D	0			D		D	0		
Approach Vol, veh/h		636			360			176 16.1			330 18.9	
Approach Delay, s/veh		19.5 P			12.8							
Approach LOS		В			В			В			В	
Timer	1	2	3	4	5	6	7	8				
Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc),		19.0	10.5	25.4		19.0	10.0	25.9				
Change Period (Y+Rc), s		4.6	4.5	* 5.8		4.6	4.0	5.8				
Max Green Setting (Gma		27.4	15.5	* 30		27.4	16.0	29.2				
Max Q Clear Time (g_c+	l1), s	4.9	4.4	4.7		12.2	2.5	16.3				
Green Ext Time (p_c), s		1.3	0.1	2.7		1.9	0.0	3.7				
Intersection Summary												
HCM 2010 Ctrl Delay			17.4									
HCM 2010 LOS			В									
Notes												

Scenario 1 Crystal Ridge 1:39 pm 06/15/2021 2024 Forecasted AM Peak T-O Engineers

Int Delay, s/veh 3.5

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configuration	IS	4			4		5	_ ∱ î⊧		1	_ ≜î ≽		
Traffic Vol, veh/h	66	0	99	2	3	15	85	1189	2	19	649	30	
Future Vol, veh/h	66	0	99	2	3	15	85	1189	2	19	649	30	
Conflicting Peds, #	/hr 0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	Free	
Storage Length	-	-	-	-	-	-	200	-	-	240	-	-	
Veh in Median Stor	rage,-#	# 1	-	-	1	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	73	0	109	2	3	16	93	1307	2	21	713	33	

Major/Minor	Minor2		N	linor1		Μ	lajor1		Μ	ajor2			
Conflicting Flow A	All1596	2248	357	1892	2248	654	713	0	-	1307	0	0	
Stage 1	755	755	-	1493	1493	-	-	-	-	-	-	-	
Stage 2		1493	-	399	755	-	-	-	-	-	-	-	
Critical Hdwy		6.54		7.54	6.54	6.94	4.14	-	-	4.14	-	-	
Critical Hdwy Stg				6.54	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg						-	-	-	-	-	-	-	
Follow-up Hdwy			3.32	3.52	4.02	3.32	2.22	-	-	2.22	-	-	
Pot Cap-1 Maneu	iver 71	41	639	43	41	409	883	-	0	525	-	0	
Stage 1	367	415	-	129	185	-	-	-	0	-	-	0	
Stage 2	326	185	-	598	415	-	-	-	0	-	-	0	
Platoon blocked,	%							-			-		
Mov Cap-1 Mane	uv e r59	35	639	32	35	409	883	-	-	525	-	-	
Mov Cap-2 Mane	uvent57	109	-	90	112	-	-	-	-	-	-	-	
Stage 1	328	398	-	115	166	-	-	-	-	-	-	-	
Stage 2	274	166	-	476	398	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Del	ay,366.8			22.1			0.6			0.3			
HCM LOS	E			С									
Minor Lane/Majo	r Mvmt	NBL	NBTE	BLnWW	BLn1	SBL	SBT						

Minor Lane/Major MMIN	NDL			DLITT	ODL	001				
Capacity (veh/h)	883	-	287	233	525	-				
HCM Lane V/C Ratio	0.106	- C).632	0.094	0.04	-				
HCM Control Delay (s)	9.6	-	36.8	22.1	12.1	-				
HCM Lane LOS	А	-	Е	С	В	-				
HCM 95th %tile Q(veh)	0.4	-	4	0.3	0.1	-				
Notes										
~: Volume exceeds capa	acity	\$: De	elay e	xceed	s 300s	; +:	Computation Not Def	fined	*: All major	volume in pla

Baseline PM Peak Hour

(Not Shown in Report)

07/20/2021

	≯	-	\mathbf{F}	4	+	•	1	Ť	۲	1	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	•	1	5	††	1	٦	A⊅		ሻ	A	
Traffic Volume (veh/h)	162	575	31	71	429	188	35	97	48	164	101	72
Future Volume (veh/h)	162	575	31	71	429	188	35	97	48	164	101	72
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	0.99		0.99	0.99		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	l .	No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885
Adj Flow Rate, veh/h	171	605	33	75	452	198	37	102	51	173	106	76
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	1	1	1	1	1	1	1	1	1	1	1	1
Cap, veh/h	234	738	624	189	1282	571	374	590	277	391	515	339
Arrive On Green	0.13	0.39	0.39	0.11	0.36	0.36	0.25	0.25	0.25	0.25	0.25	0.25
Sat Flow, veh/h	1795	1885	1595	1795	3582	1595	1201	2358	1109	1237	2057	1356
Grp Volume(v), veh/h	171	605	33	75	452	198	37	76	77	173	91	91
Grp Sat Flow(s),veh/h/ln	1795	1885	1595	1795	1791	1595	1201	1791	1676	1237	1791	1622
Q Serve(g_s), s	5.2	16.4	0.7	2.2	5.3	5.2	1.4	1.9	2.1	7.3	2.3	2.5
Cycle Q Clear(g c), s	5.2	16.4	0.7	2.2	5.3	5.2	4.0	1.9	2.1	9.3	2.3	2.5
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.66	1.00		0.84
Lane Grp Cap(c), veh/h	234	738	624	189	1282	571	374	448	419	391	448	406
V/C Ratio(X)	0.73	0.82	0.05	0.40	0.35	0.35	0.10	0.17	0.18	0.44	0.20	0.22
Avail Cap(c_a), veh/h	489	967	818	505	1887	840	651	862	807	677	862	780
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	23.8	15.5	10.8	23.8	13.4	13.4	18.5	16.7	16.8	20.4	16.9	17.0
Incr Delay (d2), s/veh	3.3	5.0	0.0	1.0	0.2	0.5	0.2	0.3	0.3	1.1	0.3	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/	′ln 2.2	6.6	0.2	0.9	1.9	1.7	0.4	0.7	0.8	2.0	0.9	0.9
Unsig. Movement Delay,												
LnGrp Delay(d),s/veh	27.1	20.6	10.8	24.8	13.7	13.9	18.7	17.0	17.1	21.6	17.2	17.3
LnGrp LOS	С	С	В	С	В	В	В	В	В	С	В	В
Approach Vol, veh/h		809			725			190			355	
Approach Delay, s/veh		21.5			14.9			17.3			19.4	
Approach LOS		С			В			В			В	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc),	s	18.8	11.9	26.2		18.8	10.0	28.1				
Change Period (Y+Rc), s		4.6	4.5	* 5.8		4.6	4.0	5.8				
Max Green Setting (Gma		27.4	15.5	* 30		27.4	16.0	29.2				
Max Q Clear Time (g_c+		6.0	7.2	7.3		11.3	4.2	18.4				
Green Ext Time (p_c), s	,	1.3	0.2	5.4		2.1	0.1	3.9				
		1.0	0.2	5.7		2.1	0.1	0.0				
Intersection Summary												
HCM 6th Ctrl Delay			18.5									
HCM 6th LOS			В									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Int Delay, s/veh 9.6

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configuration	s	\$			4		<u> </u>	_ ≜î ≽		5	_ ∱ î⊧		
Traffic Vol, veh/h	36	3	141	8	0	12	109	824	5	20	1491	72	
Future Vol, veh/h	36	3	141	8	0	12	109	824	5	20	1491	72	
Conflicting Peds, #	/hr 0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	Free	
Storage Length	-	-	-	-	-	-	200	-	-	240	-	-	
Veh in Median Stor	age,-#	<i>†</i> 1	-	-	1	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	97	97	97	97	97	97	97	97	97	97	97	97	
Heavy Vehicles, %	1	1	1	1	1	1	1	1	1	1	1	1	
Mvmt Flow	37	3	145	8	0	12	112	849	5	21	1537	74	

Major/Minor I	Minor2		N	linor1		Μ	lajor1		N	1ajor2			
Conflicting Flow A	12228	2652	769	1885	2652	425	1537	0	-	849	0	0	
Stage 1	1579	1579	-	1073	1073	-	-	-	-	-	-	-	
Stage 2		1073	-		1579	-	-	-	-	-	-	-	
Critical Hdwy			6.92		6.52	6.92	4.12	-	-	4.12	-	-	
Critical Hdwy Stg			-		5.52	-	-	-	-	-	-	-	
Critical Hdwy Stg			-		5.52	-	-	-	-	-	-	-	
Follow-up Hdwy			3.31	3.51	4.01		2.21	-	-	2.21	-	-	
Pot Cap-1 Maneu		23	346	44	23	580	433	-	0	791	-	0	
Stage 1	115	169	-	237	297	-	-	-	0	-	-	0	
Stage 2	427	297	-	341	169	-	-	-	0	-	-	0	
Platoon blocked,			0.40		4-		400	-			-		
Mov Cap-1 Maneu		17	346	20	17	580	433	-	-	791	-	-	
Mov Cap-2 Mane		90	-	56	43	-	-	-	-	-	-	-	
Stage 1	85	164	-	176	220	-	-	-	-	-	-	-	
Stage 2	310	220	-	189	164	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Dela	a¢1,2s€.5			40.4			1.9			0.1			
HCM LOS	F			E									
Minor Lane/Major	Mvmt	NBL	NBTE	BLnWW	BLn1	SBL	SBT						
Capacity (veh/h)		433	-		122	791	_						
HCM Lane V/C R	atio	0.26	-		0.169		-						
HCM Control Dela		16.2		126.5		9.7	-						
HCM Lane LOS	J ()	С	-	F	E	A	-						
HCM 95th %tile Q	(veh)	1	-	8.6	0.6	0.1	-						
Notes	. ,												
notes													

~: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon

HCM 6th Signalized Intersection Summary 1: Government Way & Sunset Blvd

With-Project AM Peak Hour

07/23/2021

	٭	-	\mathbf{F}	4	-	•	•	t	۲	5	Ŧ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	•	1	ľ	<u></u>	1	ľ	∱ î≽		ľ	∱1 ≱	
Traffic Volume (veh/h)	76	499	24	17	219	104	18	91	81	179	53	81
Future Volume (veh/h)	76	499	24	17	219	104	18	91	81	179	53	81
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach	1	No			No			No			No	
Adj Sat Flow, veh/h/ln	1841	1841	1841	1841	1841	1841	1841	1841	1841	1841	1841	1841
Adj Flow Rate, veh/h	81	531	26	18	233	111	19	97	86	190	56	86
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	4	4	4	4	4	4	4	4	4	4	4	4
Cap, veh/h	190	669	565	190	1240	551	406	494	398	394	470	417
Arrive On Green	0.11	0.36	0.36	0.11	0.35	0.35	0.27	0.27	0.27	0.27	0.27	0.27
Sat Flow, veh/h	1753	1841	1553	1753	3497	1553	1223	1839	1480	1180	1749	1554
Grp Volume(v), veh/h	81	531	26	18	233	111	19	92	91	190	56	86
Grp Sat Flow(s),veh/h/ln	1753	1841	1553	1753	1749	1553	1223	1749	1570	1180	1749	1554
Q Serve(g_s), s	2.4	14.3	0.6	0.5	2.6	2.8	0.7	2.2	2.5	8.3	1.3	2.4
Cycle Q Clear(g_c), s	2.4	14.3	0.6	0.5	2.6	2.8	3.1	2.2	2.5	10.8	1.3	2.4
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.94	1.00		1.00
Lane Grp Cap(c), veh/h	190	669	565	190	1240	551	406	470	422	394	470	417
V/C Ratio(X)	0.43	0.79	0.05	0.09	0.19	0.20	0.05	0.20	0.22	0.48	0.12	0.21
Avail Cap(c_a), veh/h	490	970	818	506	1893	841	682	864	776	660	864	768
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	23.1	15.8	11.4	22.3	12.4	12.4	16.9	15.7	15.7	19.9	15.3	15.7
Incr Delay (d2), s/veh	1.1	3.7	0.0	0.2	0.1	0.3	0.1	0.3	0.4	1.3	0.2	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/	/In 0.9	5.5	0.2	0.2	0.9	0.9	0.2	0.8	0.9	2.2	0.5	0.8
Unsig. Movement Delay,	s/veh											
LnGrp Delay(d),s/veh	24.2	19.5	11.5	22.4	12.5	12.7	16.9	15.9	16.1	21.2	15.5	16.0
LnGrp LOS	С	В	В	С	В	В	В	В	В	С	В	В
Approach Vol, veh/h		638			362			202			332	
Approach Delay, s/veh		19.8			13.0			16.1			18.9	
Approach LOS		В			В			В			В	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc),	s	19.5	10.5	25.4		19.5	10.0	26.0				
Change Period (Y+Rc), s		4.6	4.5	* 5.8		4.6	4.0	5.8				
Max Green Setting (Gma		27.4	15.5	* 30		27.4	16.0	29.2				
Max Q Clear Time (g_c+		5.1	4.4	4.8		12.8	2.5	16.3				
Green Ext Time (p c), s	- ,, -	1.5	0.1	2.7		1.9	0.0	3.7				
Intersection Summary												
HCM 6th Ctrl Delay			17.5									
HCM 6th LOS			В									
			J									

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Scenario 1 Crystal Ridge 1:39 pm 06/15/2021 2024 Forecasted with Project AM Peak T-O Engineers

Int Delay, s/veh 4.1

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configuration	IS	\$			4		5	_ ∱ î⊧		1	_ ≜ î≽		
Traffic Vol, veh/h	72	0	103	2	3	15	86	1189	2	19	649	34	
Future Vol, veh/h	72	0	103	2	3	15	86	1189	2	19	649	34	
Conflicting Peds, #	/hr 0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	Free	
Storage Length	-	-	-	-	-	-	200	-	-	240	-	-	
Veh in Median Stor	rage,-#	# 1	-	-	1	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	79	0	113	2	3	16	95	1307	2	21	713	37	

Major/Minor	Minor2		N	linor1		Ν	lajor1		Ν	lajor2			
Conflicting Flow	All1600	2252	357	1896	2252	654	713	0	-	1307	0	0	
Stage 1	755		-	1497	1497	-	-	-	-	-	-	-	
Stage 2		1497	-	399	755	-	-	-	-	-	-	-	
Critical Hdwy	7.54		6.94	7.54		6.94	4.14	-	-	4.14	-	-	
Critical Hdwy Stg			-	6.54	5.54	-	-	-	-	-	-	-	
Critical Hdwy Stg			-		5.54	-	-	-	-	-	-	-	
Follow-up Hdwy	3.52	4.02		3.52	4.02	3.32	2.22	-	-	2.22	-	-	
Pot Cap-1 Maneu	uve r 71	41	639	42	41	409	883	-	0	525	-	0	
Stage 1	367	415	-	128	184	-	-	-	0	-	-	0	
Stage 2	324	184	-	598	415	-	-	-	0	-	-	0	
Platoon blocked,	%							-			-		
Mov Cap-1 Mane	euv e r59	35	639	31	35	409	883	-	-	525	-	-	
Mov Cap-2 Mane	euve r 56	108	-	89	111	-	-	-	-	-	-	-	
Stage 1	327	398	-	114	164	-	-	-	-	-	-	-	
Stage 2	272	164	-	472	398	-	-	-	-	-	-	-	
Approach	EB			WB			NB			SB			
HCM Control Del	ay,4 s l.6			22.1			0.6			0.3			
HCM LOS	E			С									

Minor Lane/Major Mvmt	NBL	NBTEBLn	VBLn1	SBL	SBT		
Capacity (veh/h)	883	- 28	1 232	525	-		
HCM Lane V/C Ratio	0.107	- 0.684	10.095	0.04	-		
HCM Control Delay (s)	9.6	- 41.6	5 22.1	12.1	-		
HCM Lane LOS	Α	- E	E C	В	-		
HCM 95th %tile Q(veh)	0.4	- 4.6	6 0.3	0.1	-		
Notes							
~: Volume exceeds capa	acity	\$: Delay	exceed	s 300s	s +:	Computation Not Defined	*: All major volume in pla

HCM 6th Signalized Intersection Summary 1: Government Way & Sunset Blvd

	≯	+	*	4	ł	•	•	1	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ľ	•	1	ľ	<u></u>	1	ľ	A⊅		1	∱ î≽	
Traffic Volume (veh/h)	162	575	34	78	429	188	37	100	58	164	107	72
Future Volume (veh/h)	162	575	34	78	429	188	37	100	58	164	107	72
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	0.99		0.99	0.99		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885
Adj Flow Rate, veh/h	171	605	36	82	452	198	39	105	61	173	113	76
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	1	1	1	1	1	1	1	1	1	1	1	1
Cap, veh/h	233	736	623	187	1276	568	375	569	309	388	537	334
Arrive On Green	0.13	0.39	0.39	0.10	0.36	0.36	0.25	0.25	0.25	0.25	0.25	0.25
Sat Flow, veh/h	1795	1885	1595	1795	3582	1595	1194	2236	1212	1223	2109	1313
Grp Volume(v), veh/h	171	605	36	82	452	198	39	83	83	173	95	94
Grp Sat Flow(s),veh/h/ln	1795	1885	1595	1795	1791	1595	1194	1791	1657	1223	1791	1630
Q Serve(g_s), s	5.3	16.6	0.8	2.5	5.3	5.2	1.5	2.1	2.3	7.4	2.4	2.6
Cycle Q Clear(g_c), s	5.3	16.6	0.8	2.5	5.3	5.2	4.2	2.1	2.3	9.7	2.4	2.6
Prop In Lane	1.00		1.00	1.00		1.00	1.00		0.73	1.00		0.81
Lane Grp Cap(c), veh/h	233	736	623	187	1276	568	375	456	422	388	456	415
V/C Ratio(X)	0.73	0.82	0.06	0.44	0.35	0.35	0.10	0.18	0.20	0.45	0.21	0.23
Avail Cap(c_a), veh/h	484	958	811	500	1870	833	640	854	790	660	854	777
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh	24.0	15.7	10.9	24.1	13.6	13.6	18.6	16.7	16.8	20.6	16.9	16.9
Incr Delay (d2), s/veh	3.3	5.2	0.1	1.2	0.2	0.5	0.2	0.3	0.3	1.1	0.3	0.4
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh	/ln 2.2	6.8	0.2	1.0	2.0	1.7	0.4	0.8	0.8	2.1	0.9	0.9
Unsig. Movement Delay,												
LnGrp Delay(d),s/veh	27.4	20.9	11.0	25.3	13.9	14.1	18.8	17.0	17.1	21.8	17.2	17.3
LnGrp LOS	С	С	В	С	В	В	В	В	В	С	В	В
Approach Vol, veh/h		812			732			205			362	
Approach Delay, s/veh		21.8			15.2			17.4			19.4	
Approach LOS		С			В			В			В	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc),		19.2	12.0	26.3		19.2	10.0	28.2				
Change Period (Y+Rc), s	S	4.6	4.5	* 5.8		4.6	4.0	5.8				
Max Green Setting (Gma	ax), s	27.4	15.5	* 30		27.4	16.0	29.2				
Max Q Clear Time (g_c+	·I1), s	6.2	7.3	7.3		11.7	4.5	18.6				
Green Ext Time (p_c), s		1.4	0.2	5.3		2.2	0.1	3.9				
Intersection Summary												
HCM 6th Ctrl Delay			18.7									

With-Project PM Peak Hour

07/23/2021

HC HCM 6th LOS

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

В

Scenario 1 Crystal Ridge 1:39 pm 06/15/2021 2024 Forecasted with Project PM Peak **T-O Engineers**

Int Delay, s/veh 11.1

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configuration	S	4			- 4		<u>ار ا</u>	_ ≜î ≽		ľ	_ ≜ î≽		
Traffic Vol, veh/h	39	3	143	8	0	12	113	824	5	20	1491	88	
Future Vol, veh/h	39	3	143	8	0	12	113	824	5	20	1491	88	
Conflicting Peds, #	/hr 0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	Free	
Storage Length	-	-	-	-	-	-	200	-	-	240	-	-	
Veh in Median Stor	rage,-#	# 1	-	-	1	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	97	97	97	97	97	97	97	97	97	97	97	97	
Heavy Vehicles, %	1	1	1	1	1	1	1	1	1	1	1	1	
Mvmt Flow	40	3	147	8	0	12	116	849	5	21	1537	91	

Major/Minor	Minor2		N	linor1		N	lajor1			M	ajor2				
Conflicting Flow	All2236	2660	769	1893	2660	425	1537	0		-	849	0	0		
Stage 1		1579	-	1081	1081	-	-	-		-	-	-	-		
Stage 2		1081	-		1579	-	-	-		-	-	-	-		
Critical Hdwy		6.52	6.92			6.92	4.12	-		-	4.12	-	-		
Critical Hdwy St			-		5.52	-	-	-		-	-	-	-		
Critical Hdwy St			-		5.52	-	-	-		-	-	-	-		
Follow-up Hdwy		4.01	3.31	3.51	4.01		2.21	-			2.21	-	-		
Pot Cap-1 Mane			346	43	23	580	433	-		0	791	-	0		
Stage 1	115	169	-	234	294	-	-	-		0	-	-	0		
Stage 2	423	294	-	341	169	-	-	-		0	-	-	0		
Platoon blocked								-				-			
Mov Cap-1 Man			346	19	16	580	433	-		-	791	-	-		
Mov Cap-2 Man		88	-	53	40	-	-	-		-	-	-	-		
Stage 1	84	164	-	171	215	-	-	-		-	-	-	-		
Stage 2	303	215	-	187	164	-	-	-		-	-	-	-		
Approach	EB			WB			NB				SB				
HCM Control De	ela ≬ ,4\$3.6			42.2			2				0.1				
HCM LOS	F			E											
Minor Lane/Majo	or Mumt	NBL		BLnWW	/DIn1	SBL	SBT								
							301							 	
Capacity (veh/h)		433	-	177	117	791	-								
HCM Lane V/C I		0.269			0.176		-								
HCM Control De	eay (s)	16.3	-	143.6		9.7	-								
HCM Lane LOS	O(uch)	C	-	F	E	A	-								
HCM 95th %tile	Q(ven)	1.1	-	9.4	0.6	0.1	-								
Notes									_	_				 	
								-							

~: Volume exceeds capacity

\$: Delay exceeds 300s +: Computation Not Defined

*: All major volume in platoon

2024 Forecasted with Project PM Peak (Restrict) 1: Government Way & Sunset Blvd

	≯	-	\mathbf{r}	4	+	•	•	t	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	1	ሻ	- † †	1	ሻ	∱ ĵ≽		ሻ	∱ î≽	
Traffic Volume (veh/h)	76	499	25	16	219	104	15	96	153	179	53	81
Future Volume (veh/h)	76	499	25	16	219	104	15	96	153	179	53	81
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	0.99		0.99	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1841	1841	1841	1841	1841	1841	1841	1841	1841	1841	1841	1841
Adj Flow Rate, veh/h	81	531	27	17	233	111	16	102	163	190	56	86
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Percent Heavy Veh, %	4	4	4	4	4	4	4	4	4	4	4	4
Cap, veh/h	174	650	550	174	1205	537	447	542	481	369	542	479
Arrive On Green	0.10	0.35	0.35	0.10	0.34	0.34	0.31	0.31	0.31	0.31	0.31	0.31
Sat Flow, veh/h	1753	1841	1557	1753	3497	1557	1218	1749	1551	1093	1749	1545
Grp Volume(v), veh/h	81	531	27	17	233	111	16	102	163	190	56	86
Grp Sat Flow(s),veh/h/ln		1841	1557	1753	1749	1557	1218	1749	1551	1093	1749	1545
Q Serve(g_s), s	2.6	15.9	0.7	0.5	2.8	3.0	0.6	2.6	4.9	9.8	1.4	2.5
Cycle Q Clear(g_c), s	2.6	15.9	0.7	0.5	2.8	3.0	3.0	2.6	4.9	14.7	1.4	2.5
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		1.00
Lane Grp Cap(c), veh/h	174	650	550	174	1205	537	447	542	481	369	542	479
V/C Ratio(X)	0.47	0.82	0.05	0.10	0.19	0.21	0.04	0.19	0.34	0.51	0.10	0.18
Avail Cap(c_a), veh/h	449	889	752	464	1735	773	621	792	703	526	792	700
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh		17.8	12.9	24.8	13.9	14.0	16.4	15.3	16.1	21.8	14.9	15.3
Incr Delay (d2), s/veh	1.4	5.2	0.1	0.2	0.1	0.3	0.0	0.2	0.6	1.6	0.1	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/		6.6	0.2	0.2	1.0	1.0	0.2	1.0	1.7	2.5	0.5	0.8
Unsig. Movement Delay,		00.0	10.0	05.0	44.0	44.0	10.4	45 5	10 7	00.0	45.0	
LnGrp Delay(d),s/veh	27.2	23.0	12.9	25.0	14.0	14.3	16.4	15.5	16.7	23.3	15.0	15.5
LnGrp LOS	С	C	В	С	B	В	В	B	В	С	B	B
Approach Vol, veh/h		639			361			281			332	
Approach Delay, s/veh		23.1			14.6			16.2			19.9	
Approach LOS		С			В			В			В	
Timer - Assigned Phs	_	2	3	4		6	7	8				
Phs Duration (G+Y+Rc),		23.3	10.5	26.6		23.3	10.0	27.1				
Change Period (Y+Rc), s		4.6	4.5	* 5.8		4.6	4.0	5.8				_
Max Green Setting (Gma		27.4	15.5	* 30		27.4	16.0	29.2				
Max Q Clear Time (g_c+	11), S	6.9	4.6	5.0		16.7	2.5	17.9				
Green Ext Time (p_c), s		2.2	0.1	2.7		1.7	0.0	3.4				
Intersection Summary												
HCM 6th Ctrl Delay			19.3									
HCM 6th LOS			В									
• • ·												

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Int Delay, s/veh 1.3

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configuration	s		1		4		<u>ار ا</u>	- † †	1	5	- † †	1
Traffic Vol, veh/h	0	0	103	2	3	15	86	1189	2	19	649	34
Future Vol, veh/h	0	0	103	2	3	15	86	1189	2	19	649	34
Conflicting Peds, #/	/hr 0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	Free
Storage Length	-	-	0	-	-	-	200	-	250	240	-	250
Veh in Median Stor	age,-#	ŧ 1	-	-	1	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	91	91	91	91	91	91	91	91	91	91	91	91
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	113	2	3	16	95	1307	2	21	713	37

Major/Minor Mino	r2		Μ	linor1		Μ	ajor1			Ma	jor2			
Conflicting Flow All	-	-	357	1896	2252	654	713	0		- 1	307	0	0	
Stage 1	-	-	-	1497	1497	-	-	-		-	-	-	-	
Stage 2	-	-	-	399	755	-	-	-		-	-	-	-	
Critical Hdwy	-	-	6.94	7.54	6.54	6.94	4.14	-		- 4	1.14	-	-	
Critical Hdwy Stg 1	-	-	-	6.54	5.54	-	-	-		-	-	-	-	
Critical Hdwy Stg 2	-	-	-	6.54	5.54	-	-	-		-	-	-	-	
Follow-up Hdwy	-	-	3.32	3.52	4.02	3.32	2.22	-		- 2	2.22	-	-	
Pot Cap-1 Maneuver	0	0	639	42	41	409	883	-	()	525	-	0	
Stage 1	0	0	-	128	184	-	-	-	()	-	-	0	
Stage 2	0	0	-	598	415	-	-	-	()	-	-	0	
Platoon blocked, %								-				-		
Mov Cap-1 Maneuver	-	-	639	31	35	409	883	-		-	525	-	-	
Mov Cap-2 Maneuver	-	-	-	89	111	-	-	-		-	-	-	-	
Stage 1	-	-	-	114	164	-	-	-		-	-	-	-	
Stage 2	-	-	-	472	398	-	-	-		-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control D)elay,1 s .8	22.1	0.6	0.3	
HCM LOS	В	С			

Minor Lane/Major Mvmt	NBL	NBTEBLnWBLn	SBL	SBT
Capacity (veh/h)	883	- 639 232	2 525	-
HCM Lane V/C Ratio	0.107	-0.1770.09	6 0.04	-
HCM Control Delay (s)	9.6	- 11.8 22.1	12.1	-
HCM Lane LOS	А	- B (; В	-
HCM 95th %tile Q(veh)	0.4	- 0.6 0.3	0.1	-

2024 Forecasted with Project PM Peak (Restrict) 1: Government Way & Sunset Blvd

	≯	-	\mathbf{F}	4	+	×	•	t	1	1	ţ	~
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	↑	1	ሻ	- † †	7	ሻ	∱ ĵ≽		ሻ	∱ î≽	
Traffic Volume (veh/h)	162	575	34	78	429	188	37	100	100	164	107	72
Future Volume (veh/h)	162	575	34	78	429	188	37	100	100	164	107	72
Initial Q (Qb), veh	0	0	0	0	0	0	0	0	0	0	0	0
Ped-Bike Adj(A_pbT)	1.00		1.00	1.00		1.00	0.99		0.99	1.00		0.99
Parking Bus, Adj	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Work Zone On Approach		No			No			No			No	
Adj Sat Flow, veh/h/ln	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885	1885
Adj Flow Rate, veh/h	171	605	36	82	452	198	39	105	105	173	113	76
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Percent Heavy Veh, %	1	1	1	1	1	1	1	1	1	1	1	1
Cap, veh/h	231	729	617	182	1258	560	388	480	425	376	565	352
Arrive On Green	0.13	0.39	0.39	0.10	0.35	0.35	0.27	0.27	0.27	0.27	0.27	0.27
Sat Flow, veh/h	1795	1885	1595	1795	3582	1595	1194	1791	1587	1176	2109	1313
Grp Volume(v), veh/h	171	605	36	82	452	198	39	105	105	173	95	94
Grp Sat Flow(s),veh/h/ln		1885	1595	1795	1791	1595	1194	1791	1587	1176	1791	1631
Q Serve(g_s), s	5.4	17.1	0.8	2.5	5.5	5.4	1.5	2.7	3.1	8.0	2.4	2.7
Cycle Q Clear(g_c), s	5.4	17.1	0.8	2.5	5.5	5.4	4.2	2.7	3.1	11.1	2.4	2.7
Prop In Lane	1.00		1.00	1.00		1.00	1.00		1.00	1.00		0.80
Lane Grp Cap(c), veh/h	231	729	617	182	1258	560	388	480	425	376	480	437
V/C Ratio(X)	0.74	0.83	0.06	0.45	0.36	0.35	0.10	0.22	0.25	0.46	0.20	0.22
Avail Cap(c_a), veh/h	471	932	788	486	1819	810	622	831	736	606	831	757
HCM Platoon Ratio	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Upstream Filter(I)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Uniform Delay (d), s/veh		16.4	11.4	25.0	14.2	14.2	18.4	16.8	17.0	21.3	16.7	16.8
Incr Delay (d2), s/veh	3.4	5.8	0.1	1.3	0.2	0.5	0.2	0.3	0.4	1.3	0.3	0.3
Initial Q Delay(d3),s/veh	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
%ile BackOfQ(50%),veh/		7.2	0.3	1.1	2.1	1.8	0.4	1.1	1.1	2.2	0.9	1.0
Unsig. Movement Delay,		00.4		00.0		447	10.0	47 4	474	00 F	47.0	47.0
LnGrp Delay(d),s/veh	28.2	22.1	11.4	26.3	14.5	14.7	18.6	17.1	17.4	22.5	17.0	17.2
LnGrp LOS	С	C	В	С	B	В	В	B	В	С	B	B
Approach Vol, veh/h		812			732			249			362	
Approach Delay, s/veh		22.9			15.9			17.5			19.7	
Approach LOS		С			В			В			В	
Timer - Assigned Phs		2	3	4		6	7	8				
Phs Duration (G+Y+Rc),		20.4	12.1	26.5		20.4	10.0	28.7				
Change Period (Y+Rc), s		4.6	4.5	* 5.8		4.6	4.0	5.8				
Max Green Setting (Gma		27.4	15.5	* 30		27.4	16.0	29.2				
Max Q Clear Time (g_c+	11), S	6.2	7.4	7.5		13.1	4.5	19.1				
Green Ext Time (p_c), s		1.8	0.2	5.3		2.1	0.1	3.7				
Intersection Summary												
HCM 6th Ctrl Delay			19.4									
HCM 6th LOS			В									
• • ·												

Notes

* HCM 6th computational engine requires equal clearance times for the phases crossing the barrier.

Int Delay, s/veh 2.3

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configuration	IS		1		4		<u> </u>	_ ∱ î⊧		5	_ ≜î ≽		
Traffic Vol, veh/h	0	0	143	8	0	12	113	824	5	20	1491	88	
Future Vol, veh/h	0	0	143	8	0	12	113	824	5	20	1491	88	
Conflicting Peds, #	/hr 0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free	
RT Channelized	-	-	None	-	-	None	-	-	Free	-	-	Free	
Storage Length	-	-	0	-	-	-	200	-	-	240	-	-	
Veh in Median Stor	rage,-#	# 1	-	-	1	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	97	97	97	97	97	97	97	97	97	97	97	97	
Heavy Vehicles, %	1	1	1	1	1	1	1	1	1	1	1	1	
Mvmt Flow	0	0	147	8	0	12	116	849	5	21	1537	91	

Major/Minor Mino	r2		Μ	linor1		Μ	lajor1			M	ajor2			
Conflicting Flow All	-	-	769	1892	2660	425	1537	()	-	849	0	0	
Stage 1	-	-	-	1081	1081	-	-		-	-	-	-	-	
Stage 2	-	-	-	811	1579	-	-		-	-	-	-	-	
Critical Hdwy	-	-	6.92	7.52	6.52	6.92	4.12		-	-	4.12	-	-	
Critical Hdwy Stg 1	-	-	-	6.52	5.52	-	-		-	-	-	-	-	
Critical Hdwy Stg 2	-	-	-	6.52	5.52	-	-		-	-	-	-	-	
Follow-up Hdwy	-	-	3.31	3.51	4.01	3.31	2.21		-	-	2.21	-	-	
Pot Cap-1 Maneuver	0	0	346	43	23	580	433		-	0	791	-	0	
Stage 1	0	0	-	234	294	-	-		-	0	-	-	0	
Stage 2	0	0	-	342	169	-	-		-	0	-	-	0	
Platoon blocked, %									-			-		
Mov Cap-1 Maneuver	-	-	346	19	16	580	433		-	-	791	-	-	
Mov Cap-2 Maneuver	-	-	-	55	40	-	-		-	-	-	-	-	
Stage 1	-	-	-	171	215	-	-		-	-	-	-	-	
Stage 2	-	-	-	191	164	-	-		-	-	-	-	-	

Approach	EB	WB	NB	SB	
HCM Control D	elay,2 2 .9	41.1	2	0.1	
HCM LOS	С	Е			

Minor Lane/Major Mvmt	NBL	NBTEBLnWBLn1	SBL	SBT	
Capacity (veh/h)	433	- 346 120	791	-	
HCM Lane V/C Ratio	0.269	-0.4260.172	0.026	-	
HCM Control Delay (s)	16.3	- 22.9 41.1	9.7	-	
HCM Lane LOS	С	- C E	А	-	
HCM 95th %tile Q(veh)	1.1	- 2.1 0.6	0.1	-	