CLARK 53RD SHORT PLAT

Concept

DRAINAGE REPORT

October 2025

The staff of Storhaug Engineering under the direction of the undersigned professional engineer whose seal and signature appear hereon has prepared this report.

Storhaug Engineering Project No. 25-121

Table of Contents

CHAPTER 1 – DRAINAGE SUMMARY

CHAPTER 2 - BASIN MAP

CHAPTER 3 - ON SITE RUNOFF CALCULATIONS

CHAPTER 4 - NRCS SOILS MAP

CHAPTER 5 - GEOTECHNICAL REPORT

Chapter 1

DRAINAGE SUMMARY

Clark 53rd Short Plat Concept Drainage Summary

PROJECT LOCATION AND DESCRIPTION

This project includes the development of 21 new duplex homes, proposed parking areas, an alley, new road improvements including pavement, separated sidewalks and drainage infrastructure, as well as utility infrastructure. The project consists of two (2) phases. Phase 1 is the road improvements to $53^{\rm rd}$ Avenue and Ray Street. The road improvements will consist of a paved alleyway, driveway/parking areas and duplexes. Phase 1 had infrastructure approved as part of a separate entitlement package which remains relatively unchanged. Phase 2 is the northern half of the property which includes an extension of Ray Street, the addition of $52^{\rm nd}$ Avenue, Nola Street and additional driveway/parking areas and duplexes. This report will provide calculations and conclusions for both phase 1 and 2 combined.

The existing property address is 3227 E 53rd Avenue, Spokane, WA 99223. Refer to the grading and drainage plans for further information on project location and layout. The project is located in a portion of the Northwest ¼ of Section 03, Township 24 North, Range 43 East, W.M. City of Spokane, Spokane County, Washington

SITE CHARACTERISTICS

The total property area is approximately 4.88 acres of undeveloped land. The existing site drainage generally flows to the northwest, north, and east sides within the property boundary. Four (4) predevelopment basins encompass the property. Basins 1 and 2 flow to the northwest and north. Basin 3 and 4 have runoff which flows southwest and southeast to 53rd Avenue. The post development section in this report will have additional information regarding these basins.

Post Development Basins will encompass all the proposed development runoff.

The Geotechnical Report identified shallow bedrock throughout the site. Refer to Chapter 5 of this report for additional information.

SUBSURFACE CHARACTERISTICS

The USDA Natural Resources Conservation Service (NRCS) has mapped the soil on the property as Urban Land-Seaboldt, disturbed complex. The following table summarizes the site soil information and impervious/pervious areas for both the pre-development conditions and the post-development conditions. The values listed in the table show the existing conditions as well as the proposed construction. Class D soils were utilized due to the bedrock found onsite with zero infiltration capacity. Refer to Chapter 3 of this report for further information on calculations.

FULL PROJECT AREA (Phase 1 and Phase 2) PRE-DEVELOPMENT VS. POST-DEVELOPMENT

	Pre-Development	Post-Development
Surface Cover Type	Unimproved	Landscaping/Lawn
Pollutant Generating	No	
NRCS Soil Type	Type D	
C Value*	0.22	0.22
Surface Cover Area (acres)	4.48	1.82
Surface Cover Type	Proposed Asphalt,	Concrete and Curb
Pollutant Generating	Yes	
NRCS Soil Type	Type D	
C Value*	0.90	0.90
Surface Cover Area (acres)	0.00	1.96
Surface Cover Type	Proposed Gravel	
Pollutant Generating	Yes	
NRCS Soil Type	Type D	
C Value*	0.55	
Surface Cover Area (acres)	0.28	
Surface Cover Type	Proposed Detached	Sidewalk (Concrete)
Pollutant Generating	No	
NRCS Soil Type	Type D	
C Value*	0.90	0.90
Surface Cover Area (acres)	0.00	0.22
Surface Cover Type	Building Roof	
Pollutant Generating	No	
NRCS Soil Type	Type D	
C Value*	0.90	0.90
Surface Cover Area (acres)	0.05	0.81
Pollutant Generating Impervious Surface (acres)	0.28	3.78
Total Basin Area (acres)**	4.81	4.81
Composite C	0.25	0.64

^{*}The C values listed are taken from the 10-year storm values from Section 5.5.1 of the Spokane Regional Stormwater Manual (SRSM). Per Section 5.5.1.

^{**}This area does not include the backyard basins (L, M, O), or the fire access basin (N). See individual basin calculations for that.

METHODOLOGY

The basin areas associated with the project were analyzed for runoff flows utilizing the Rational & SCS Method. Peak runoff rates and volumes were established for the 10 and 50-year storm events. The detention ponds were sized to meet treatment requirements using the "1815" method as outlined in the SRSM. See the section titled "Water Quality Treatment" in this report for more information regarding water quality treatment of stormwater runoff.

Rainfall intensities used for the Rational Method were calculated using "m" and "n" coefficients and an associated equation from Section 2-5.4A of the WSDOT Hydraulics Manual. As no infiltration was recommended by the geotechnical engineer except for infiltration within the bio-retention media layer, the stormwater facilities are designed to store the runoff from each drainage basin up to the 50-year storm event. The storage volume will be met using both the pond volumes and volume within the voids of the rock underdrains below the ponds. While the individual roadside swales do provide storage volume, their main purpose is the treatment of the runoff. Calculations will show that within the individual basins, the swales provided are sized large enough to handle the treatment volume required.

Basins A, B, C, F, H, I, J and K are hydraulically connected via rock underdrains and perforated pipes which convey all stormwater to the larger swales located in Basin C and Basin F. These swales are located inside Tract A and B respectively. Swale C is a deep, walled swale with a drain rock gallery below. Swale F has a drain rock gallery below as well. Swale C has been sized to fully contain the 50-year event of upstream sub-basins and also has a metered release matching Swale F's release to ensure that Swale F is not flooded. The discharge from Swale F was developed using the City of Spokane's allowable discharge rate of 1.5 gallons/minute/acre for total acreage of the site. This rate equates to 0.0196 cfs which does include the public right-of-way area. For the discharge point to the public stormwater system, this discharge rate will be used. A 0.463-inch orifice will be used to limit the outflow from the ponds to the city system with the maximum allowable discharge rate.

Basins D and E are small offsite basins and are hydraulically connected via rock underdrains, perforated pipes and a culvert across 53^{rd} Avenue which convey all stormwater to Swale E3, located in Basin E. This swale will have a catch basin structure which discharges stormwater into a medium-sized drain rock gallery below. The calculations will show that the retained stormwater (above ground) will drain within 72 hours for the 10-year storm event. The discharge from this infiltration gallery was set at 0.005 cfs . The outflow is based on an assumption that the underground water will slowly infiltrate laterally through the soil and rock layers.

Basin G is a stand-alone, small basin in the northwest portion of the property. Runoff in Basin G flows to Swale G via overland flow, catch basins and piping. Swale G will have a catch basin structure which discharges stormwater into a medium-sized drain rock gallery below. The calculations will show that the retained stormwater (above ground) will drain within 72 hours for the 10-year storm event. The discharge from this infiltration gallery was set at 0.03 cfs, which is less than the 2-year pre-development release rate. The outflow is based on an assumption that the underground water will slowly infiltrate laterally through the soil and rock layers.

Basins L, M and O are small backyard basins. Calculations are provided for these basins but the general design is that runoff within these basins will just be contained within the backyard grass areas.

Basin N is a stand-alone basin on the east side of the property containing the fire access road. Runoff in this basin will flow to the east down the fire access road to a new swale on the north side of the road (Swale N). The calculations will show that the retained stormwater (above ground) will drain within 72 hours for the 10-year storm event. The discharge from this swale was set at 0.005 cfs. The outflow is based on an assumption that the underground water will slowly infiltrate laterally through the soil and rock layers.

POST-DEVELOPMENT BASIN INFORMATION

Refer to Chapter 2 of this report for the Basin Map.

All runoff from the road, sidewalks, roof, landscaping, and asphalt parking areas will be captured and treated in their basins proposed onsite detention swale(s). Roof area was established as approx. 1,960 ft² per unit and will be a non-asphaltic material. All stormwater runoff within the basins will be captured and routed to the detention swales via overland flow. All stormwater from both pollutant generating and non-pollutant generating surfaces, will be collected and treated together in the same treatment pond(s) inside each basin. The detention ponds have been designed with adequate "208" volume to provide pre-treatment of the stormwater runoff from all contributing pollutant generating impervious areas. The table above summarizes the existing and proposed impervious/pervious areas within the entire project limits for Phase 1 and 2.

Additional storage is provided in each of the detention ponds via rock underdrains with perforated pipes. This will serve as temporary storage for the runoff as it moves laterally through the soil and conveyed through the perforated pipes. Below Swales C, E, F, G, H and J are drain rock galleries which also contribute to the storage of stormwater. As mentioned previously, an allowable 0.0196 cubic feet per second discharge rate was calculated for discharge to the public system for the large combined drainage basin. A 0.463-inch orifice will be drilled into the bottom of a flow control downturned pipe within a flow control structure. Swale F has 1.00' of above ground storage capacity and the gravel gallery is 5.00' deep with 12-inches of soil above. Swale C has 2.83' of total above ground storage, with 6.00' of below ground storage including a gravel gallery that is 5' deep. The remaining basins have smaller swales with up to 1.00' of above ground storage and roughly 1'-3' of below ground storage with rock underdrains.

POST-DEVELOPMENT – OFFSITE

No offsite basins are anticipated to impact the stormwater systems, as this property is located at a high point in relationship to the surrounding area.

PERPETUAL MAINTENANCE OF FACILITIES

The owner of the property will establish an HOA to be the entity responsible for the perpetual maintenance of all facilities associated with the storm water system. The proposed improvements should result in no significant increase in maintenance for the owner of the property.

OFF-SITE EASEMENTS

Swale H and N will require an offsite stormwater easement. These properties are currently under the same ownership as this development. Swale C and F will be within Drainage Tracts (Tract A and B).

REGIONAL FACILITIES

The proposed drainage design provides the treatment and proper distribution for all the proposed improvements. Additionally, the impervious surfaces of the future proposed improvements were taken into consideration for the design. The proposed and future improvements span multiple parcels. The owner of the properties shall establish an HOA to be the entity responsible for the joint management of the on-site stormwater system.

STORAGE ANALYSIS

There are four (4) main basins, <u>Basin 1</u> (A, B, C, F, H, I, J and K), <u>Basin 2</u> (D & E), <u>Basin 3</u> (G) and <u>Basin 4</u> (Fire Access Road sub-basin N). These basins are designed to fully contain stormwater runoff for up to the 50-year storm event. The following table represents the storm volume vs. the proposed storage capacity of the downstream swale, the combined storage volume of all swales and underdrains and drain rock gallery within the combined basins. The table also shows the expected time for disposal of the associated 50-year events completely and the time for disposal of stormwater from Swale F, Swale E3, Swale G and Swale N. Basins L, M and O are small backyard basins in which stormwater will be contained within the grassed backyards.

STORM VOLUME VS. STORAGE CAPACITY & TIME TO DRAIN

		Post-	Provided Pond &	Time to Drain
Combined Basin		Developed	Rock Gallery	100% Proposed
(Sub-Basins)	Storm	Storm Volume	Volume	Storm Volume
	Event	(CF)	(CF)	(Hours)
BASIN 1	50-yr	20,865	22,865	295.61
(A, B, C, F, H, I, J, K)				
BASIN 2	50-yr	1,046	1,562	58.12
(D, E)				
BASIN 3	50-yr	620	983	5.74
(G)				
BASIN 4	50-yr	881	996	48.94
(N)				

OVERFLOW STRUCTURE - EMERGENCY OUTFLOW PIPE CALCULATIONS

The overflow structure in Swale F is designed to allow stormwater from large storm events to enter the City system quickly. This 8" pipe will allow the 0.0196 cfs orifice flow to be conveyed to the city system during normal operating procedures and the overflow pipe located at the surface can allow free flow of stormwater during large historical storm events (i.e. 100-yr). The following table justifies the use and design of the 8" emergency outflow pipe.

EMERGENCY OUTFLOW PIPE CALCULATIONS

	50-Year Peak			Depth in pipe at	Velocity in pipe at
	Runoff Rate,	Pipe Diameter	Slope	Peak Flow	Peak Flow
Outfall Basin	Q ₅₀ (cfs)*	(ft)	(ft/ft)	(ft)	(ft/sec)
F	10.13	0.667	0.075	0.67**	2.46

^{*50-}year storm event calculation can be found in Chapter 3 of this report

^{**}Combined Basins A, B, C, F, H, I, J and K 50-year storm has a peak flow of 10.13 cfs. The 8" pipe will allow 0.87 cfs at max capacity. The remaining flow will be backed up within the drainage systems of the combined basins.

EMERGENCY OVERFLOW / 100-YR FLOOD PATH

The overall storm systems designed are sized to fully contain the 50-year storm event and/or release the runoff into the City stormwater system via 0.463-inch orifice, as explained above. In the event of a 100-year storm event, an emergency outlet pipe has been designed within the overflow structure in Swale F to be utilized by allowing the excess water to overflow into the system and drain to the city system.

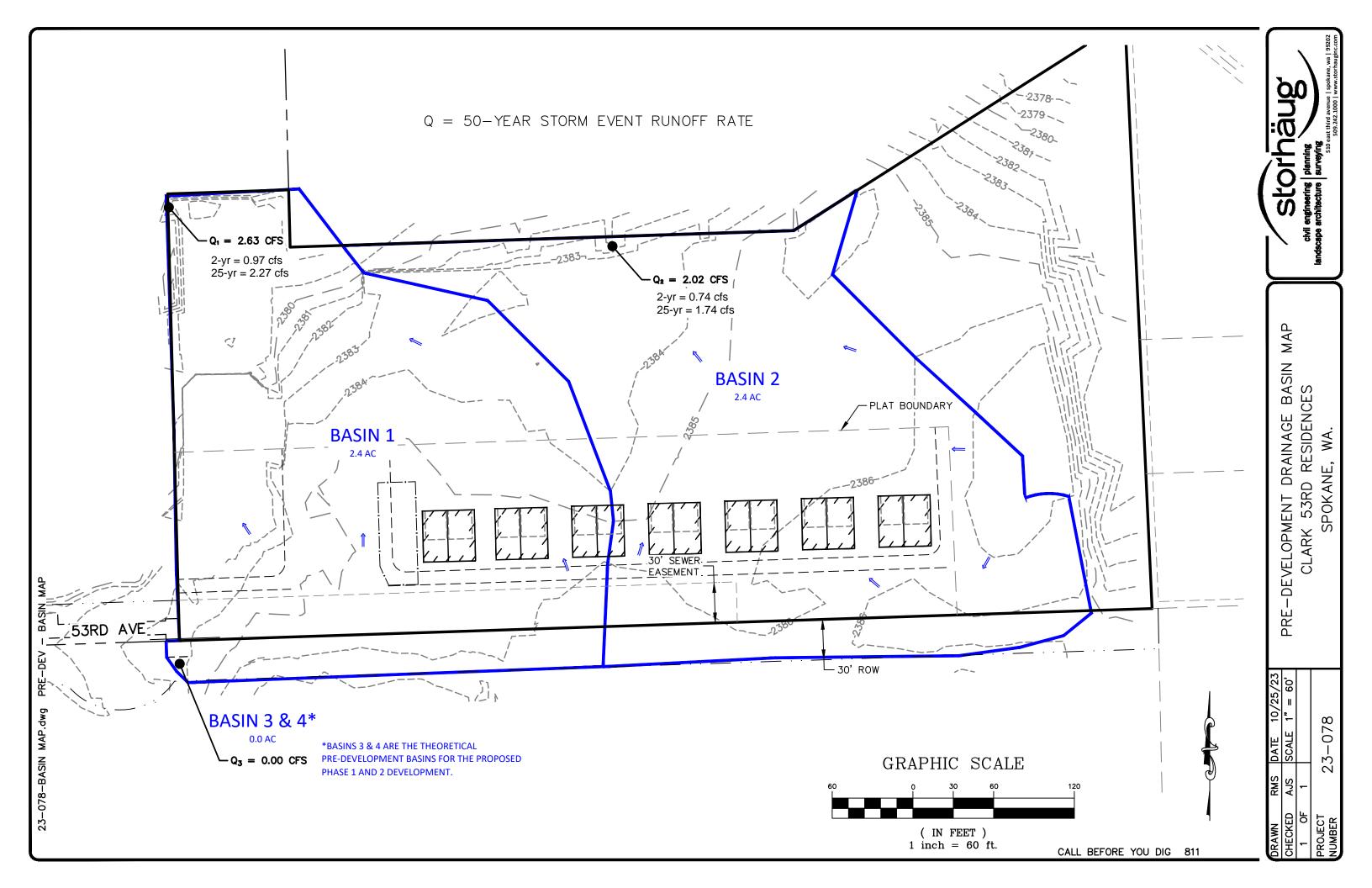
In the event of a failure of all the drainage systems, stormwater will collect within the detention basins until it reaches the maximum storage height. Stormwater will overflow the top of the ponds and drain into the street and continue down the road to the west. Historically, this is the same flow path for storm events for this project area.

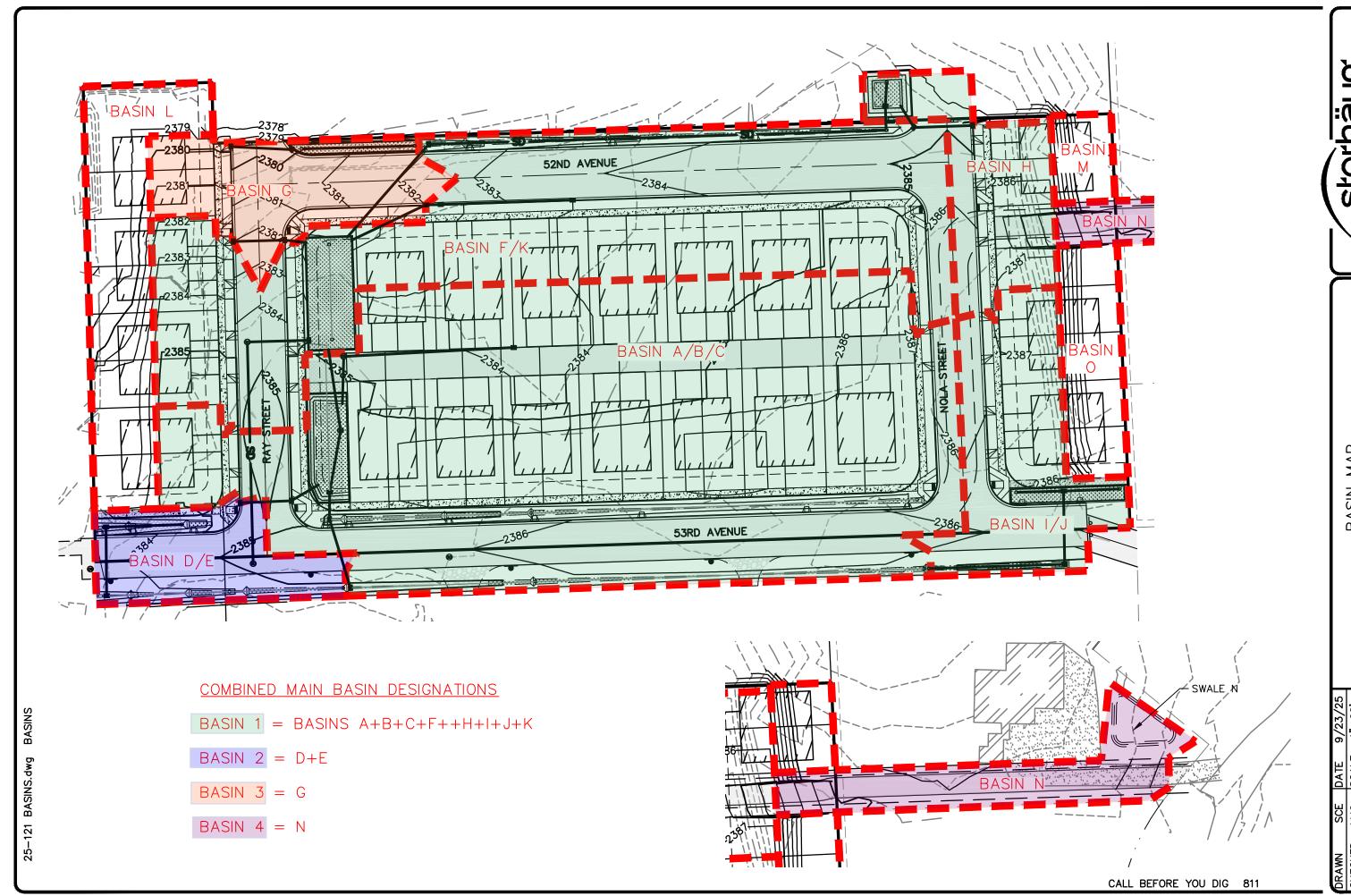
RESULTS AND CONCLUSIONS

The following tables show the treatment volume requirements to accommodate the proposed site improvements and the respective volumes provided by the proposed drainage improvements. Since the detention ponds are sized to fully contain the runoff from up to the 50-year storm event, no offsite drainage is expected to occur.

TREATMENT VOLUME (REQUIRED VS. PROVIDED)

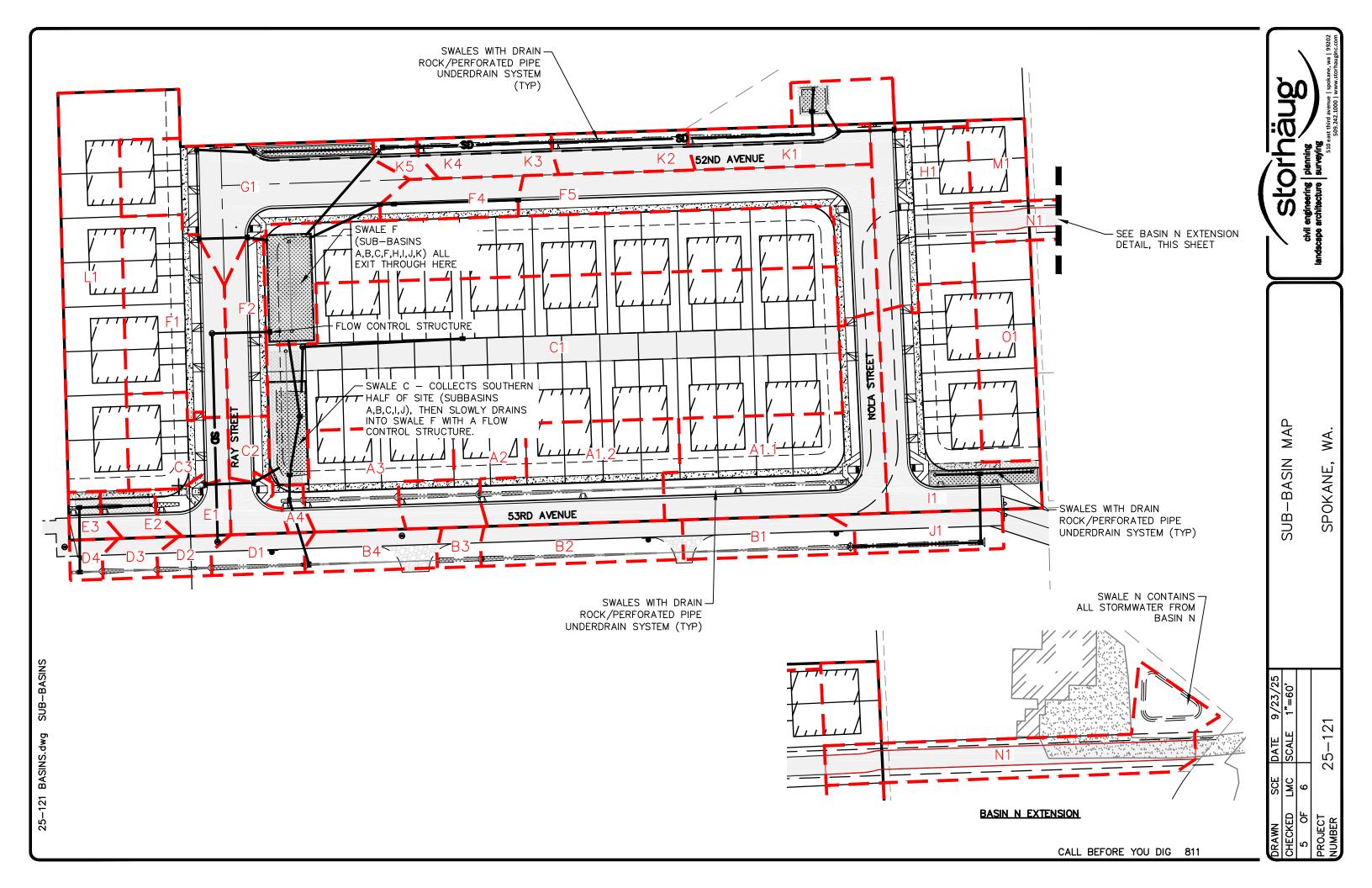
	Treatment Volume	Treatment Volume
Basin	Required	Provided
	(CF)	(CF)
A	461	730
В	233	584
С	936	1,528
D	93	292
Е	113	130
F	610	1,243
G	245	273
Н	140	175
I	265	395
J	60	224
K	113	667
L	0*	0
M	0*	0
N	160	448
О	0*	0


^{*}Basins L, M and O are small, back yard basins in which have no treatment requirements due to not having any PGIS areas.



Chapter 2

BASIN MAP



storhäug

BASIN MAP

WA. SPOKANE,

Chapter 3

RATIONAL & SCS METHOD STORMWATER CALCULATIONS

PRE-DEVELOPMENT CALCULATIONS

RATIONAL & SCS METHOD (TWO YEAR STORM DESIGN)	PROJECT: 23-078 Clark/53rd	
DETENTION BASIN DESIGN	BASIN: PRE-DEV BASIN 1	
	REVIEWER: AJS	
	DESIGNER: RMS	
	DATE: 6/20/2024	

RUNOFF STORAG	E					
Single (Type A) Extiltration (cfs)	0.3	-Double (Type-B)	1.0			
=Xilleranoi+(cits)	0.0		1.0			
Time of Conc. (min)				5,00		
Area (Acres)				2.43		
Composite "C"				0.28		
208 Treated Area (a	acres)			0.28		
Volume Provided			208:	0	Storm:	
Outflow (cfs)				0.0000		
Area * C* Factor		400,000		0.68		
Coef. of Intensity		3.47				
	n:	0.556				
#1	#2	#3	#4	#5	#6	#7
Time	Time	Intensity	Q dev.	Vin	V out	Storage
Inc.	Inc.					
(min.)	(sec.)	(in./hr.)	(cfs)	(cu. ft.)	(cu, ft.)	(cu. ft.)
	(#1*60)		(A°C°#3)		(Outf.*#2)	(#5-#6)
5.00	300.00	1.42	0.97	390	0.00	390
5	300	1.42	0.97	390	0.00	390
10	600	0.96	0.66	463	0.00	463
45	900	0.77	0.53	528	0.00	528
50	1200	0.66	0.45	584	0.00	584
25	1500	0.58	0.40	635	0.00	635
30	1800	0.52	0.36	681	0.00	681
35	2100	0.48	0.33	724	0.00	724
40	2400	0,45	0.31	764	0.00	764
45	2700	0.42	0.29	804	0.00	804
50	3000	0,39	0.27	836	0.00	836
55	3300	0.37	0.26	870	0.00	870
60	3600	0.36	0.24	902	0.00	902
65	3900	0.34	0.23	932	0.00	932
70	4200	0,33	0.22	962	0,00	962
75	4500	0,34	0.22	990	0.00	990
80	4800	0,30	0.21	1018	0.00	1018
85	5100	0.29	0.20	1044	0.00	1044
90	5400	0.28	0.19	1070	0.00	1070
95	5700	0.28	0.19	4095	0.00	1095
100	6000	0.27	0.18	1119	0.00	1119
105	6300	0.26	0.18	1142	0.00	1142
110	6600	0.25	0.17	1165	0,00	1165
115	6900	0.25	0.17	1188	0,00	1188
4320	259200	0.03	0.02	5858	0.00	5858

THAIL OF GO	NCENTRATION	(minutes)	
To (overland)	Tc (gutter)	
L(A) =	10	L(C) =	0
K(A)	420	K(C) =	0
S(A) =	0.0194	S(C) =	
Tc (A) =	0.17	Tc (C) =	0.00
L(B) =	0		
K(B) =	0	Tc (C) =	0.00
S(B) =	0	Tc(A+B) =	0.17
Tc (B) =	0.00	To(tot.) =	5,00
		Intensity =	1.42

To (total) = To (overland) + To (gutter) To = L / [K \sqrt{S}] L = length of segment (ft) S = slope of segment (feet/foot) K = ground cover coefficient (ft/min) -See Table 5-6 of SRSM for "K" values

208-SWALE POND CALCULATIONS

*Volume Required [cf] = 1133*A

Volume Required [cf] = 1815*A

*Must meet SRSM soil requirements

320 cu.-ft. 512 cu.-ft.

STORAGE REQUIREMENTS 2 YEAR DESIGN STORM

Maximum storage required by SCS Method=

SCS Total Storm Volume - Total Detention Storage

4166 cu.ft.

0 curft.

STORHAUG ENGINEERING Pre-Basin 1 2-Year

CONTRIBUTING AREAS

Site	2.43	Acres	105924 s.f.			
	Areas (Ac.)	"C*	A*C	Areas (s.f.)	Treat?	
Asphalt/Concrete	0.02	0.900	0.0162	783	Y	
Attached Sidewalks	0.00	0.900	0.0000	0	Y	
Detached Sidewalks	0.00	0.900	0.0000	0	N	
Building/Roof	0.07	0.900	0.0655	3169	N	
Grass / Landscaping	0.00	0.220	0.0000	0	N	
Unimproved	2.08	0.220	0.4569	90460	N	
Gravel	0.26	0.550	0.1454	11512	Υ	
	Total A	Comp "C"	Opeak	1		
Total Site	2.43	0.28	0.97			
Connected Impervious	0.28	0.06	0.02	-		

OND-VOLUMES	Bottom	Depth	208	Depth	Top		
	Elevation	to 208	Elevation	to Top	Elevation	208	Storage
Swale	Area	Elevation	Area	Elevation	Area	Velume	Volume
Number	(ef)	(ft)	(sf)	(ft)	(cf)	(cf)	(of)
208-SWALE	0	0.50	9	1,0	0	0	0
XXX	0	0.50	0	4.0	0	0	0

PEAK RUNOFF VOLUME (2-YR STORM, SCS METHOD)

	Areas (Ac.)	CN	A*C			
Asphalt	0.02	98	1.762	P ₂ =	1.2	in
Attached Sidewalks	0.00	98	0.000	S =	1.07	
Detached Sidewalks	0.00	98	0.000	Total Runoff Depth(Q ₂)=	0.47	in
Building/Roof	0.07	98	7.130	Total Storm Volume (V) =	4166	cf
Grass / Landscaping	0.00	80	0.000	*Class D soils w/ >75% grass cover		
Unimproved	2.08	89	184.824	*Class D Soils w/ 30%-70% ground cover	(Herbace	ous)
Gravel	0.26	GR.	25 800	7	7.	

23-078 CLARK/53rd

Total A Comp "C" 2.43 90.31

RATIONAL & SCS METHOD (TWENTY-FIVE YEAR STORM DESIGN)	PROJECT: 23-078 Clark/53rd	
DETENTION BASIN DESIGN	BASIN: PRE-DEV BASIN 1	
XCCCC254XC2A33XB0ACC2454X0	REVIEWER: AJS	
	DESIGNER: RMS	
	DATE: 6/20/2024	

Single (Type A) Exfiltration (ofs)	0.3	Double (Type-B)	1.0			
Time of Conc. (min) Area (Acres) Composite "C" 208 Treated Area (s				5.00 2.43 0.28 0.02		
Volume Provided Outflow (cfs) Area * C* Factor	,		208:	0 0,000 88.0	Storm:	
Coef. of Intensity		9.09 0.626				
#1	#2	#3	#4	#5	#6	#7
Time Inc.	Time Inc.	Intensity	Q dev.	Vin	V out	Storage
(min.)	(sec.) (#1*60)	(in./hr.)	(cfs) (A*C*#3)	(cu. ft.)	(cu. ft.) (Outf.*#2)	(cu. ft.) (#5-#6)
5,00	300,00	3,32	2.27	912	0.00	912
5	300	3,32	2.27	912	0.00	912
10	600	2.15	1.47	1032	0.00	1032
45	900	1,67	1.14	1143	0.00	1143
20	1200	1:39	0.95	1241	0.00	1241
25	4500	1,21	0.83	1328	0.00	1328
30	1800	1.08	0.74	1406	0.00	1406
35	2100	0.98	0.67	1478	0.00	1478
40	2400	0.90	0.62	4545	0.00	1545
45	2700	0.84	0.57	1607	0.00	4607
50	3000	0.79	0.54	4666	0.00	1666
55	3300	0.74	0.51	1721	0.00	1721
60	3600	0.70	0.48	1774	0.00	1774
65	3900	0.67	0.46	1824	0.00	1824
70	4200	0.64	0.44	1871	0,00	1871
75	4500	0.61	0.42	1917	0.00	1917
89	4800	0.59	0.40	1961	0.00	1961
85	5100	0.56	0.39	2004	0.00	2004
99	5400	0.54	0.37	2045	0.00	2045
95	5700	0.53	0.36	2085	0.00	2085
100	6000	0,51	0.35	2123	0.00	2123
110	6600	0.48	0,33	2197	0.00	2197
120	7200	0.45	0.31	2267	0.00	2267
125	7500	0.44	0.30	2300	0.00	2300
4320	259200	0.05	0.03	8541	0.00	8541

TIME OF CO	ONCENTRATION (minutes)	
Tc (overland	0	Tc (gutter)	
L(A) = K(A) S(A) =	10 420 0.0194	L(C) = K(C) = S(C) =	0
Ta (A) =	0.17	Tc (C) =	0.00
L(B) = K(B) = S(B) =	0 0	Tc (C) = Tc(A+B) =	0.00 0.17
Tc (B) =	0.00	Tc(tot.) = Intensity =	5.00

To (total) = To (overland) + To (gutter) To = L / $[K\sqrt(S)]$ L = length of segment (#) S = slope of segment (feet/foot) K = ground cover coefficient (ft/min) -See Table 5-6 of SRSM for "K" values

208 SWALE POND CALCULATIONS

RUNOFF STORAGE

*Volume Required [cf] = 1133*A Volume Required [cf] = 1815*A *Must meet SRSM soil requirements

20 cu.-ft. 33 cu.-ft. 0 cu.-ft.

Provided:

STORAGE REQUIREMENTS 25-YEAR DESIGN STORM

Maximum storage required by SGS-Method=

Provided: SCS Total Storm Volume - Total Detention-Storage 9846 cu.ft.

0 cu.ft. 9846

STORHAUG ENGINEERING

Pre-Basin 1 25-Year

CIN	1 rubi	2,1,1193	31 MIC	EMS	

Site	2.43	2.43 Acres		105924 s.f.			
	Areas (Ac.)	"C"	A*C	Areas (s.f.)	Treat?		
Asphalt	0.02	0.900	0.0162	783	Y		
Driveways	0.00	0.900	0.0000	0	Y		
Detached Sidewalks	0.00	0,900	0.0000	0	N		
Building/Roof	0.07	0.900	0.0655	3169	N		
Grass / Landscaping	0.00	0.220	0.0000	0	N		
Unimproved	2.08	0.220	0.4569	90460	N		
Gravel	0.26	0.550	0.1454	11512	N		
	Total A	Comp "C"	Opeak	1			
Total Site	2.43	0.28	2.27				
Connected Impervious	0.02	0.90	0.05				

OND-VOLUMES	Bottom	Depth	208	Depth	Top		
	Elevation	to-208	Elevation	to Top	Elevation	208	Storage
Swale	Area	Elevation	Area	Elevation	Area	Volume	Volume
Number	(ef)	(ft)	(6f)	(ft)	(cf)	(of)	(cf)
208 SWALE	0	0.50	0	1.0	0	0	0
XXX	0	0.50	0	1.0	0	0	0

PEAK RUNOFF VOLUME (25-YR STORM, SCS METHOD)

	Areas (Ac.)	CN	A*C			
Asphalt	0.02	98	1.762	P ₂₅ =	2 in	
Attached Sidewalks	0.00	98	0.000	S =	1.07	
Detached Sidewalks	0.00	98	0.000	Total Runoff Depth(Q2)=	1.12 in	
Building/Roof	0.07	98	7.130	Total Storm Volume (V) =	9846 cf	
Grass / Landscaping	0.00	80	0.000	*Class D soils w/ >75% grass cover		
Unimproved	2.08	89	184,824	*Class D Soils w/ 30%-70% ground cover	(Herbaceous)	
Gravel	0.26	98	25.899			

Total A Comp "C" 2.43 90.31

23-078 CLARK/53rd

RATIONAL & SCS METHOD (TWO YEAR STORM DESIGN)	PROJECT: 23-078 Clark/53rd	
DETENTION BASIN DESIGN	BASIN: PRE-DEV BASIN 2	
	REVIEWER: AJS	
	DESIGNER: RMS	
	DATE: 6/20/2024	

RUNOFF STORAG	E					
Single (Type A) Extituation (ofs)	0.3	-Double (Type-B)	1.0			
Time of Conc. (min)			1.0	5.00		
Area (Acres)				2.39		
Composite "C"				0.22		
208 Treated Area (a	acres)			0.00		
Volume Provided			208:	0	Storm:	
Outflow (cfs)				0.0000		
Area * C* Factor				0,52		
Coef. of Intensity		3.47				
	n	: D.556				
#1	#2	#3	#4	#5	#6	#7
Time	Time	Intensity	Q dev.	V in	Vout	Storage
Inc.	Inc.					
(min.)	(sec.) (#1*60)	(in./hr.)	(cfs) (A*C*#3)	(cu. ft.)	(cu. ft.) (Outf.*#2)	(cu. ft.) (#5-#6)
5.00	300.00	1,42	0.74	299	0.00	299
5	300	1.42	0.74	299	0.00	299
40	600	0.96	0.51	355	0.00	355
15	900	0.77	0.40	405	0,00	405
20	1200	0.66	0.34	448	0.00	448
25	1500	0,58	0,30	487	0.00	487
30	1800	0,52	0,27	523	0.00	523
35	2100	0.48	0.25	556	0.00	556
40	2400	0.45	0.23	586	0.00	586
45	2700	0.42	0.55	615	0.00	615
50	3000	0.39	0.21	642	0.00	642
55	3300	0.37	0.20	668	0.00	668
60	3600	0.36	0.19	692	0.00	692
65	3900	0.34	0.18	716	0.00	716
70	4200	0.33	0.17	738	0.00	738
75	4500	0.34	0.17	760	0.00	760
80	4800	0.30	0.16	784	0.00	784
85	5100	0.29	0.15	801	0.00	801
90	5400	0.28	0,45	821	0.00	824
95	5700	0.28	0.14	840	0.00	840
100	6000	0.27	0,14	859	0.00	859
105	6300	0.26	0.14	877	0.00	877
110	6600	0.25	0.13	894	0.00	894
115	6900	0,25	0.13	912	0.00	912
4320	259200	0.03	0.02	4496	0.00	4496

1,10,0	NCENTRATION	(minutes)	
Tc (overland)	Tc (gutter)	
L(A) =	10	L(C) =	0
K(A)	420	K(C) =	0
S(A) =	0.0194	S(C) =	0
Tc (A) =	0.17	Tc (C) =	0.00
L(B) =	0		
K(B) =	0	Tc (C) =	0,00
S(B) =	0	To(A+B) =	0.17
Tc (B) =	0.00	To(tot.) =	5,00
		Intensity =	1.42

To (total) = To (overland) + To (gutter)
To = L / [K\(S)]
L = length of segment (#)
S = slope of segment (#eet/foot)
K = ground cover coefficient (ft/min)
-See Table 5-6 of SRSM for "K" values

23

"Volume Required [of] = 1133"A

Volume-Required [of] = 1815"A

"Must meet SRSM soil requirements

0 cu.ft. 0 cu.ft. 0 cu.ft.

Inadequate Inadequate

STORAGE-REQUIREMENTS—2-YEAR-DESIGN-STORM Maximum-storage-required-by-SCS-Method=

Provided: SCS-Total Storm-Volume—Total Detention-Storage

3592 cu.-ft.

Provided:

0 cu. ft. 3592

STORHAUG ENGINEERING	Pre-Basin 2 2-Year

CONTRIBUTING AREAS

Site	2,39	Acres	103924 s.f.			
	Areas (Ac.)	*C"	A*C	Areas (s.f.)	Treat?	
Asphalt/Concrete	0.00	0.900	0.0000	0	Y	
Attached Sidewalks	0.00	0,900	0.0000	0	Y	
Detached Sidewalks	0.00	0.900	0.0000	0	N	
Building/Roof	0.00	0.900	0.0000	0	N	
Grass / Landscaping	0.00	0,220	0,0000	0	N	
Unimproved	2.39	0.220	0.5249	103924	N	
Gravel	0.00	0.550	0.0000	0	Y	
	Total A	Comp "C"	Qpeak	1		
Total Site	2.39	0.22	0.74			
Connected Impervious	0.00	#DIV/0!	#DIV/0!	-		

POND VOLUMES						
	Bottom	Depth	208	Depth	Top	
	Elevation	to-208	Elevation	to-Top	Elevation	208
Swale	Area	Eleuation	Acen	Elevation	Arna	Maluma

Swale Number	Area (6f)	Elevation (ft)	Area (6f)	Elevation (ft)	Area (sf)	Volume (cf)	Volume (cf)
208 SWALE	0	0,50	(01)	1.0	(01)	(01)	0
XXX	0	0.50	0	4.0	0	0	0
						0	0

PEAK RUNOFF VOLUME (2-YR STORM, SCS METHOD)

	Areas (Ac.)	CN	A*C			
Asphalt	0.00	98	0.000	P ₂ =	1.2 in	
Attached Sidewalks	0.00	98	0.000	S =	1.24	
Detached Sidewalks	0.00	98	0.000	Total Runoff Depth(Q_2)=	0.41 in	
Building/Roof	0.00	98	0.000	Total Storm Volume (V) =	3592 cf	
Grass / Landscaping	0.00	80	0.000	*Class D soils w/ >75% grass cover		
Unimproved	2.39	89	212.333	*Class D Soils w/ 30%-70% ground cover	(Herbaceous)	
Gravel	0.00	98	0.000	· ·		

Total A Comp "C" 2.39 89.00

RATIONAL & SCS METHOD (TWENTY-FIVE YEAR STORM DESIGN)
DETENTION BASIN DESIGN PROJECT: 23-078 Clark/53rd BASIN: PRE-DEV BASIN 2 REVIEWER: AJS DESIGNER: RMS DATE: 6/20/2024

RUNOFF STORAGE	E					
Single (Type-A) Exfiltration (cfc)	0,3	Double (Type B)	0 1,0			
Time of Conc. (min) Area (Acres) Composite "C" 208 Treated Area (a Volume Provided Outflow (cfs) Area * C" Factor Coef. of Intensity	ncres) m:	9.09	208:	5.00 2.39 0.22 0.00 0 0.0000 0.52	Storm;	Ŋ
	n:	0.626				
#1	#2	#3	#4	#5	#6	#7
Time	Time	Intensity	Q dev.	Vin	V out	Storage
Inc. (min.)	(sec.) (#1*60)	(in:/hr.)	(cfs) (A*C*#3)	(cu. ft.)	(cu. ft.) (Outf.*#2)	(cu. ft.) (#5-#6)
5.00	300,00	3:32	1.74	700	0.00	700
5	300	3.32	1.74	700	0.00	700
10	600	2.15	1.13	792	0.00	792
15	900	1.67	0.88	878	0.00	878
50	1200	4,39	0,73	952	0.00	952
25	1500	1.21	0.64	1019	0.00	1019
30	1800	1.08	0.57	1079	0.00	1079
35	2100	0.98	0.52	1135	0.00	1135
40	2400	0.90	0.47	1186	0.00	1186
45	2700	0,84	0.44	1234	0.00	1234
50	3000	0.79	0.41	1279	0.00	1279
55	3300	0.74	0.39	1321	0.00	1321
60	3600	0.70	0.37	1361	0.00	1361
65	3900	0.67	0.35	1400	0.00	1400
70	4200	0.64	0.33	1436	0.00	1436
75	4500	0.61	0.32	1472	0.00	1472
80	4800	0.59	0.31	1505	0.00	1505
85	5100	0,56	0.30	1538	0.00	1538
90	5400	0.54	0.29	1570	0.00	1570
95	5700	0.53	0.28	1600	0.00	1600
100	6000	0.51	0.27	1639	0.00	1630
110	6600	0.48	0.25	1686	0.00	1686
120	7200	0.45	0.24	1740	0.00	1740
125	7500	0.44	0.23	1766	0.00	1766
4320	259200	0.05	0.03	6556	0.00	6556

TIME OF CO	NCENTRATION (minutes)	
To (overland	0	Tc (gutter)	
L(A) = K(A) S(A) =	10 420 0,0194	L(C) = K(C) = S(C) =	0
Tc (A) =	0.17	Tc (C) =	0.00
L(B) = K(B) = S(B) =	0 0 0	Tc (C) = Tc(A+B) =	0.00 0.17
To (B) =	0.00	Tc(tot.) = Intensity =	5.00 3.32

Pre-Basin 2 25-Year

To (total) = To (overland) + To (gutter) To = L / [K \sqrt{S}] L = length of segment (ft) S = slope of segment (feet/foot) K = ground cover coefficient (ft/min) -See Table 5-6 of SRSM for "K" values

208 SWAL	E POND	CALCUL	ATHOMS

"Volume Required [cf] = 1133"A

Volume Required [cf] = 1815"A

"Must meet SRSM soil requirements Provided: 0 cu.ft. 0 cu.ft. 0 cu-ft-

STORAGE REQUIREMENTS 25-YEAR DESIGN STORM

STORHAUG ENGINEERING

Maximum storage required by SCS Method=

Providedi SCS-Total-Storm-Volume Total Detention-Storage 8903 cu-ft-0 cu-ft.

CONTRIBUTING AREAS

Site	2.39	Acres		103924	s,f.
	Areas (Ac.)	"C"	A*C	Areas (s.f.)	Treat?
Asphalt	0.00	0.900	0.0000	0	Y
Driveways	0.00	0.900	0.0000	0	Y
Detached Sidewalks	0.00	0.900	0,0000	0	N
Building/Roof	0.00	0,900	0.0000	0	N
Grass / Landscaping	0.00	0.220	0,0000	0	N
Unimproved	2.39	0.220	0.5249	103924	N
Gravel	0.00	0.550	0.0000	0	N
	Total A	Comp "C"	Opeak	1	
Total Site	2.39	0.22	1.74		
Connected Impervious	0.00	#DIV/0!	#DIV/01	-	

Total A Comp "C" 2.39 89.00

POND-VOLUMES							
Swale	Bettom Elevation Area	Depth to 208 Elevation	208 Elevation Area	Depth to-Top Elevation	Top Elevation Area	208 Volume	Storage Volume
Number 208-SWALE	(6f) 0	(ft) 0.50	(ef)	(ft) 1-0	(ef)	(6f)	(cf)
XXX	0	0.50	0	1.0	0	o	o
						n	0

	Areas (Ac.)	CN	A*C		
Asphalt	0.00	98	0.000	P ₂₆ =	2 in
Attached Sidewalks	0.00	98	0.000	S =	1.24
Detached Sidewalks	0.00	98	0.000	Total Runoff Depth(Q2)=	1.03 in
Building/Roof	0.00	98	0.000	Total Storm Volume (V) =	8903 cf
Grass / Landscaping	0.00	80	0.000	*Class D soils w/ >75% grass cover	
Unimproved	2.39	89	212.333	*Class D Soils w/ 30%-70% ground cover	(Herbaceous
Gravel	0.00	98	0.000	1.57	

23-078 CLARK/53rd

POST DEVELOPMENT

CALCULATIONS

(COMBINED BASINS)

RATIONAL & SCS METHOD	PROJECT: 25-121 Clark 53rd
DETENTION BASIN DESIGN	BASIN: BASIN 1 (A+B+C+F+H+I+J+K)
	REVIEWER: AJS
Design Year: 50	DESIGNER: SCE
_	DATE: 10/28/2025

						DATE	. 10/20/2020				
RUNOFF STORAG	GE .						-	TIME OF CO	NCENTRATION ('minutes)	
Single (Type A)		Orifice Outflow	1					Tc (overland)	Tc (gutter)	
Exfiltration (cfs)	0.3	•	0.0196					L(A) =	10	L(C) =	
ime of Conc. (min	.)			5.00				K(A)	420	K(C) =	
rea (Acres)	''			4.28				S(A) =	0.0194	S(C) =	
composite "C"				0.64				O(A) -	0.0134	0(0) -	
08 Treated Area (acree)			1.65				Tc (A) =	0.17	Tc (C) =	0.
olume Provided	acres)		208:	5549.5	Storm:	22865		10 (A) -	0.17	10 (0) =	0.1
Outflow (cfs)		Orifice Allowable		0.0196	Otomi.	22000	,				
Area * C" Factor		Office Anowabie	Canon Mate.	2.73				L(B) =	0		
Coef. of Intensity	m	: 10.68		2.70				K(B) =	Ö	Tc (C) =	0.0
Joer. or interiorly		: 0.635						S(B) =	0	Tc(A+B) =	0.
		. 0.000						O(B) -	U	IO(AID) =	0.
#1	#2	#3	#4	#5	#6	#7	_	Tc (B) =	0.00	Tc(tot.) =	5.0
Time	Time	Intensity	Q dev.	V in	V out	Storage				Intensity =	3.8
Inc.	Inc.										
(min.)	(sec.)	(in./hr.)	(cfs)	(cu. ft.)	(cu. ft.)	(cu. ft.)					
	(#1*60)		(A*C*#3)		(Outf.*#2)	(#5-#6)					
									c (overland) + Tc	(gutter)	
5.00	300.00	3.84	10.48	4212	5.88	4206		Tc = L / [K√(
5	300	3.84	10.48	4212	5.88	4206		L = length of	segment (ft) segment (feet/foo	4)	
10	600	2.47	6.75	4736	11.76	4724			cover coefficient (1		
15	900	1.91	5.22	5226	17.65	5208			5-6 of SRSM for "h		
20	1200	1.59	4.34	5657	23.53	5633		-See Table S)=0 01 31\31W 101 1	values	
25	1500	1.38	3.77	6040	29.41	6011					
20	1800	1.23	3.36	6387	35.29	6352					
35	2100	1.12	3.05	6705	41.17	6664					
40	2400	1.03	2.80	7000	47.05	6953					
4 5	2700	0.95	2.60	7274	52.94	7221					
50	3000	0.89	2.43	7532	58.82	7473					
55	3300	0.84	2.20	7775	64-70	7710					
60	3600	0.79	2.16	8006	70.58	7935					
65	3900	0.75	2.06	8 226	76.46	8149					
70	4200	0.72	1.96	8436	82.35	8353					
75	4500	0.69	1.88	8637	88.23	8549					
80	4800	0.66	1.80	8831	94.11	8737					
85	5100	0.64	1.73	9017	99.99	8917					
90	5400	0.61	1.67	9197	105.87	9092					
95	5700	0.59	1.62	9372	111.75	9260					
100	6000	0.57	1.56	9540	117.64	9423					
600	36000	0.18	0.50	18092	705.82	17387					
690	41400	0.17	0.46	19032	811.69	18221					
695	41700	0.17	0.46	19082	817.57	18265					
4320	259200	0.05	0.14	37099	5081.87	32017	=				
208 SWALE PONE					1872	4					
		red [cf] = 1133*A ad [cf] = 1815*A			2998						
Must meet SRSM				Provided:	2995 (
WIGHT THESE STASIN		nto		riovided.	9949.9	ou. n.					
STODAGE DEOLIII	DEMENTS F	-YEAR DESIGN ST	OPM								
		e required by SCS I		ntire storm) =	20865	cu ft					
IVI	aiuiii siolay	o .oquilou by 000 i		Provided:	22865		Excess Storag	e 2000 23			
				i iovided.	22000	ou. II.	LAUCSS SIUIAY	. 2000.23			
T	Time for dispos	al of Full Storm Eve	nt @ 0.0196 CF	S							
	,		al Volume / Rate		295.61	HRS					

STORHAUG ENGINEERING Basin 1 (A+B+C+F+H+I+J+K)

CONTRIBUTING AREAS Site 4.28 Acres 186599 s.f. Areas "C" A*C Areas (s.f.) Treat? (Ac.) 1.26 0.39 0.18 0.79 1.66 Paved Driveway Sidewalk Building Landscape 1.1368 0.3499 0.1655 0.7084 0.3654 0.900 0.900 0.900 0.900 0.220 55020 16933 8012 34287 72347 N N N Total A 4.28 1.65 Comp "C" 0.64 0.90 Qpeak 10.48 5.71 Total Site Connected Impervious

POND VOLUMES	208	Storage
Swale	Volume	Volume
Number	(cf)	(cf)
Basin A	730.25	1438
Basin B	584.5	1267
Basin C	1528.5	8512
Basin F	1243	7494
Basin H	175.5	853
Basin I	395.5	1812
Basin J	224.5	392
Baskin K	667.75	1097
Total	5549.50	22865.00

PEAK RUNOFF VOLUME (50-YR STORM, SCS METHOD)

	Areas (Ac.)	CN	A*C			
Paved	1.26	98	123.782	P(50) =	2.2 in	
Driveway	0.39	98	38.095	S =	0.99	
Sidewalk	0.18	98	18.025	Total Runoff Depth(Q50) =	1.34 in	
Building	0.79	98	77.138	Total Storm Volume (V) =	20865 cf	
Landscape	1.66	80	132.869	*Class D Soils w/ >75% Grass Cover		
				*Class D Soils w/ 30%-70% ground cove	r (Herbaceous)	

Total A Comp "C" 4.28 91.02

ORIFICE DISPOSAL RATE

C (Orifice Coefficient)	0.61	
Orifice Diameter	0.65	in
Vater Depth Above Orifice	3.00	ft
Orifice Dienosal Rate	0.0196	cfe

See orifice calculations for more information

11-131 Cheney Elementary

RATIONAL & SCS METHOD	PROJECT: 25-121 Clark 53rd
DETENTION BASIN DESIGN	BASIN: BASIN 2 (D+E)
	REVIEWER: AJS
Design Year: 50	DESIGNER: SCE
	DATE: 10/29/2025

RUNOFF STORAGE	E						•	TIME OF CO	ONCENTRATION (minutes)
Single (Type A) Exfiltration (cfs)	0.3	Orifice Outflow	0.0000					Tc (overland	i)	Tc (gutter)
Time of Conc. (min) Area (Acres) Composite "C")			5.00 0.22 0.61				L(A) = K(A) S(A) =	10 420 0.0194	L(C) = K(C) = S(C) =
208 Treated Area (a Volume Provided Outflow (cfs)	acres)	Seenage	208: Ouflow Rate:	0.11 422.25 0.0050	Storm:	1562		Tc (A) =	0.17	Tc (C) =
Area * C" Factor		Geepage	(assumed)	0.14				L(B) =	0	
Coef. of Intensity		10.68 0.635	(=====					K(B) = S(B) =	0	Tc (C) = Tc(A+B) =
#1	#2	#3	#4	#5	#6	#7	-	Tc (B) =	0.00	Tc(tot.) =
Time	Time	Intensity	Q dev.	V in	V out	Storage				Intensity =
Inc.	Inc.									
(min.)	(sec.) (#1*60)	(in./hr.)	(cfs) (A*C*#3)	(cu. ft.)	(cu. ft.) (Outf.*#2)	(cu. ft.) (#5-#6)			- /	
5.00	300.00	3.84	0.52	211	1.50	209		Tc = L / [K√	Tc (overland) + Tc (S)] f segment (ft)	(gutter)
5	300	3.84	0.52	211	1.50	209	-		segment (feet/foo	t)
10	600	2.47	0.34	237	3.00	234			cover coefficient (f	
15	900	1.91	0.26	261	4.50	257		-See Table	5-6 of SRSM for "k	(" values
20	1200	1.59	0.22	283	6.00	277				
25	1500	1.38	0.19	302	7.50	294				
30	1800	1.23	0.17	319	9.00	310				
35	2100	1.12	0.15	335	10.50	325				
40	2400	1.03	0.14	350	12.00	338				
45	2700	0.95	0.13	364	13.50	350				
50	3000	0.89	0.12	377	15.00	362				
55	3300	0.84	0.11	389	16.50	372				
60	3600	0.79	0.11	400	18.00	382				
65	3900	0.75	0.10	411	19.50	392				
70	4200	0.72	0.10	422	21.00	401				
75	4500 4800	0.69	0.09 0.09	432 441	22.50 24.00	409 417				
80	4800 5100	0.66	0.09	44 1 451		417 425				
85 90	5100 5400	0.64 0.61	0.09 0.08	45 i 4 60	25.50 27.00	425 433				
95 95	5700	0.59	0.08	468	28.50	440				
100	6000	0.57	0.08	477	30.00	447				
600	36000	0.18	0.03	904	180.00	724				
690	41400	0.17	0.02	951	207.00	744				
695	41700	0.17	0.02	954	208.50	745				
4320	259200	0.05	0.01	1855	1296.00	559	-			
	Volume Require	ed [ef] = 1133*A d [ef] = 1815*A		Provided:	128 6 205 6 422.25 6	ou. ft.				
STORAGE REQUIR Ma		YEAR DESIGN ST required by SCS I	Nethod (store er	tire storm) =	1046 o		Excess Storage	515.31		

Time for disposal of Full Storm Event @ 0.0196 CFS
Total Volume / Rate = Time >>>

STORHAUG ENGINEERING Basin 2 (D+E)

58.12 HRS

CONTRIBUTING AREAS Site 0.22 Acres 9759 s.f. Areas "C" A*C Areas (s.f.) Treat? Areas (Ac.) 0.11 0.00 0.01 0.00 0.10 Paved Driveway Sidewalk Building Landscape 0.900 0.900 0.900 0.900 0.220 0.1017 0.0000 0.0134 0.0000 0.0211 4924 0 648 N 0 4187 Total A 0.22 0.11 Comp "C" 0.61 0.90 Qpeak 0.52 0.39 Total Site Connected Impervious

0.00

0.00 0.17

5.00 3.84

		208	Storage
Swale		Volume	Volume
Number		(cf)	(cf)
Basin D		292.25	518
Basin E		130	1044
	Total	422.25	1561.53

	Areas	CN	A*C		
	(Ac.)				
Paved	0.11	98	11.078	P(50) =	2.2 is
Driveway	0.00	98	0.000	S =	1.08
Sidewalk	0.01	98	1.458	Total Runoff Depth(Q50) =	1.29 ir
Building	0.00	98	0.000	Total Storm Volume (V) =	1046 c
Landscape	0.10	80	7.690	*Class D Soils w/ >75% Grass Cover	
				*Class D Soils w/ 30%-70% ground cove	r (Herbaceo
	Total A	Comp "C"		3	
	0.22	90.28			

11-131 Cheney Elementary

RATIONAL & SCS METHOD DETENTION BASIN DESIGN PROJECT: 25-121 Clark 53rd BASIN: Basin 3 (G) REVIEWER: AJS DESIGNER: SCE DATE: 10/29/2025 Design Year: 50

						DATE. 10/				
RUNOFF STORAGE	Ξ						TIME OF CO	NCENTRATION	(minutes)	_
Single (Type A)		Orifice Outflow	0				Tc (overland)		Tc (gutter)	
xfiltration (cfs)	0.3		0.0000							
							L(A) =	10	L(C) =	
ime of Conc. (min)				5.00			K(A)	420	K(C) =	
rea (Acres)				0.27 0.54			S(A) =	0.0194	S(C) =	
Composite "C"							- (A)	0.47	T (0)	
08 Treated Area (a	icres)		000	0.13	04	000	Tc (A) =	0.17	Tc (C) =	
olume Provided		Deat Deat	208: Ouflow Rate:	273.5	Storm:	983				
utflow (cfs) rea * C" Factor			re-Dev =0.97)	0.0300 (0.03<0.97 thereid	ore smaller post d	L(B) =	0		
oef, of Intensity		10.68	re-Dev =0.97)	0.15			L(B) = K(B) =	0	Tc (C) =	
oer. or intensity		0.635					S(B) =	0	Tc(A+B) =	
	11.	0.033					3(b) =	U	IC(ATD) =	
#1	#2	#3	#4	#5	#6	#7	Tc (B) =	0.00	Tc(tot.) =	
Time	Time	Intensity	Q dev.	V in	V out	Storage	TC (B) =	0.00	Intensity =	
Inc.	Inc.	intoriotty	Q 001.	*		Ciorago			interioriy	
(min.)	(sec.)	(in./hr.)	(cfs)	(cu. ft.)	(cu. ft.)	(cu. ft.)				
()	(#1*60)	()	(A*C*#3)	()	(Outf.*#2)	(#5-#6)				
	()		()		(()	Tc (total) = To	(overland) + Tc	(autter)	
5.00	300.00	3.84	0.57	227	9.00	218	Tc = L / [K√(S		(9)	
							L = length of			
5	300	3.84	0.57	227	9.00	218		egment (feet/foo	ot)	
10	600	2.47	0.36	255	18.00	237	K = ground co	over coefficient (ft/min)	
15	900	1.91	0.28	282	27.00	255	-See Table 5-	6 of SRSM for "I	<" values	
20	1200	1.59	0.23	305	36.00	269				
25	1500	1.38	0.20	326	45.00	281				
30	1800	1.23	0.18	345	54.00	291				
35	2100	1.12	0.16	362	63.00	299				
40	2400	1.03	0.15	378	72.00	306				
45	2700	0.95	0.14	392	81.00	311				
50	3000	0.89	0.13	406	90.00	316				
55	3300	0.84	0.12	419	99.00	320				
60	3600	0.79	0.12	432	108.00	324				
65	3900	0.75	0.11	444	117.00	327				
70	4200	0.72	0.11	455	126.00	329				
75	4500	0.69	0.10	466	135.00	331				
80	4800	0.66	0.10	476	144.00	332				
85	5100	0.64	0.09	486	153.00	333				
90	5400	0.61	0.09	496	162.00	334				
95	5700	0.59	0.09	505	171.00	334				
100	6000	0.57	0.08	515	180.00	335				
600	36000	0.18	0.03	976	1080.00	-104				
690	41400	0.17	0.02	1027	1242.00	-215				
695	41700	0.17	0.02	1029	1251.00	-222				
4320	259200	0.05	0.01	2001	7776.00	-5775				
08 SWALE POND	CALCULATIO	uc.								
		vs ed feft = 1133*A			146	cu ft				
		d [cf] = 1815*A			233					
	oiume Require soil reauiremen			Provided:	273.5 (

335 cu. ft.

Maximum storage required by StCS Method (store entire storm) = 335 cu. ft. Excess Storage 648.49

Pre-Dev Volume = 4166 for 2 yr, 9846 60.0196 CFS

Time for disposal of Full Storm Event (20.0196 CFS)

Total Volume / Rate = Time >>> 3.10 HRS

Time for disposal of Surface Water (Volume above Pond)

Volume of Pond / Rate = Time >>> 6.57 HRS

STORHALIC ENGINEERING		

STORAGE REQUIREMENTS - 50-YEAR DESIGN STORM

Maximum storage required by SCS Method (store entire storm) =

Basin 3 (G) 11-131 Cheney Elementary

0.27

88.52

CONTRIBUTING AREAS	3				
Site	0.27	Acres		11818 :	s.f.
	Areas (Ac.)	"C"	A*C	Areas (s.f.)	Treat?
Paved	0.11	0.900	0.0963	4662	Υ
Driveway	0.02	0.900	0.0193	933	Υ
Sidewalk	0.00	0.900	0.0000	0	N
Building	0.00	0.900	0.0000	0	N
Landscape	0.14	0.220	0.0314	6223	N
				_	
	Total A	Comp "C"	Qpeak	1	
Total Site	0.27	0.54	0.57		
Connected Impervious	0.13	0.90	0.44	_	

POND VOLUMES							
	Bottom	Depth	208	Depth	Top		
	Elevation	to 208	Elevation	to Top	Elevation	208	Storage
Swale	Area	Elevation	Area	Elevation	Area	Volume	Volume
Number	(sf)	(ft)	(sf)	(ft)	(sf)	(cf)	(cf)
G1	547	0.50	547	1.0	547	273.5	547
	Length	Width	Depth	Pipe Dia	Voids		
Gallery	(ft)	(ft)	(ft)	(in)	%		
G	82	6.5	2	6	40%	0	436.1
						273.5	983

RUNOFF VOLUME	***	, ,			
	Areas (Ac.)	CN	A*C		
Paved	0.11	98	10.488	P(50) =	2.2 in
Driveway	0.02	98	2.099	S =	1.30
Sidewalk	0.00	98	0.000	Total Runoff Depth(Q50) =	1.16 in
Building	0.00	98	0.000	Total Storm Volume (V) =	1146 cf
Landscape	0.14	80	11.429	*Class D Soils w/ >75% Grass Cover	
				*Class D Soils w/ 30%-70% ground cover	(Herbaceous
	Total A	Comp "C"			•

RATIONAL & SCS METHOD DETENTION BASIN DESIGN	PROJECT: 25-121 Clark 53rd BASIN: Basin 4 (N)
	REVIEWER: AJS
Design Year: 50	DESIGNER: SCE
	DATE: 10/29/2025

m: 1 n: 0 me nc. ec.) 1*80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	10.68 .635 #3 Intensity (in./hr.) 3.84 2.47 1.91 1.59 1.38 1.23	208: Ouflow Rate: (assumed) #4 Q dev. (cfs) (A*C*#3) 0.42 0.42 0.27 0.24 0.18 0.15 0.14	5.00 0.23 0.48 0.09 448.75 0.0050 0.11 #5 V in (cu. ft.) 171 171 171 172 242 242 249 245 259	#6 V out (cu. ft.) (Out. #2) 1.50 3.00 4.60 6.00 7.50 9.00	996 #7 Storage (cu. ft.) (#5#6) 169 489 297 223 237 250	Tc = L / [K√(s L = length of S = slope of K = ground c	10 420 0.0194 0.17 0 0 0 0 0 0 0.00	t) t/min)
n: 0 #2 ime nc. ec.) *60)	10.68 .635 #3 Intensity (in./hr.) 3.84 2.47 1.91 1.59 1.38 1.23	208: Ouflow Rate: (assumed) #4 Q dev. (cfs) (A*C*#3) 0.42 0.27 0.27 0.21 0.16 0.15	0.23 0.48 0.09 448.75 0.005 0.11 #5 V in (cu. ft.) 171 474 492 242 242 245	#6 V out (cu. ft.) (Ouff.*#2) 1.50 1.50 3.00 4.50 6.00 7.50	#7 Storage (cu. ft.) (#5-#6) 169 189 189 207 222 223 237	$K(A)$ $S(A) =$ $Tc (A) =$ $L(B) =$ $K(B) =$ $S(B) =$ $Tc (btal) = T$ $Tc = L / [K \setminus (t_{A}) = T_{A})$ $L = length of S = slope of S =$	420 0.0194 0.17 0 0 0 0 0 0 0.00 1c (overland) + Tc (S)] I segment (flevifoo) segment (flevifoo) sover coefficient (fle	K(C) = S(C) = Tc (C) = Tc (C) = Tc(A+B) Tc(tot.): Intensity (gutter) t) Vmin)
n: 0 #2 ime nc. ec.) *60)	10.68 .635 #3 Intensity (in./hr.) 3.84 2.47 1.91 1.59 1.38 1.23	Ouflow Rate: (assumed) #4 Q dev. (cfs) (A*C*#3) 0.42 0.42 0.27 0.24 0.48 0.45 0.44	0.23 0.48 0.09 448.75 0.005 0.11 #5 V in (cu. ft.) 171 474 492 242 242 245	#6 V out (cu. ft.) (Ouff.*#2) 1.50 1.50 3.00 4.50 6.00 7.50	#7 Storage (cu. ft.) (#5-#6) 169 189 189 207 222 223 237	S(A) = Tc (A) = L(B) = K(B) = S(B) = Tc (B) = Tc (total) = T Tc = L / [K-V](L = length of S = slope of: K = ground c	0.0194 0.17 0 0 0 0 0.00 1c (overland) + Tc: S)] segment (febt/foo) sover coefficient (fi	S(C) = Tc (C) = Tc (C) = Tc(A+B) Tc(tot.): Intensity (gutter) t) Wmin)
n: 0 #2 ime nc. ec.) *60)	10.68 .635 #3 Intensity (in./hr.) 3.84 2.47 1.91 1.59 1.38 1.23	Ouflow Rate: (assumed) #4 Q dev. (cfs) (A*C*#3) 0.42 0.42 0.27 0.24 0.48 0.45 0.44	0.48 0.09 448.75 0.0050 0.11 #5 V in (cu. ft.) 171 171 192 242 242 245	#6 V out (cu. ft.) (Ouff.*#2) 1.50 1.50 3.00 4.50 6.00 7.50	#7 Storage (cu. ft.) (#5-#6) 169 189 189 207 222 223 237	$Tc (A) =$ $L(B) =$ $K(B) =$ $S(B) =$ $Tc (btal) = T$ $Tc = L / [K \setminus (S)]$ $L = length of$ $S = slope of:$ $K = ground c$	0.17 0 0 0 0 0 0.00 Tc (overland) + Tc S)] f segment (#p segment (feet/foor) over coefficient (fi	Tc (C) = Tc (C) = Tc (A+B) Tc(tot.): Intensity (gutter) t) Vmin)
n: 0 #2 ime nc. ec.) *60)	10.68 .635 #3 Intensity (in./hr.) 3.84 2.47 1.91 1.59 1.38 1.23	Ouflow Rate: (assumed) #4 Q dev. (cfs) (A*C*#3) 0.42 0.42 0.27 0.24 0.48 0.45 0.44	0.09 448.75 0.0050 0.111 #5 V in (cu. ft.) 171 474 492 242 229 245	#6 V out (cu. ft.) (Ouff.*#2) 1.50 1.50 3.00 4.50 6.00 7.50	#7 Storage (cu. ft.) (#5-#6) 169 189 189 207 222 223 237	L(B) = K(B) = S(B) = Tc (B) = Tc (total) = T T = L / [K/(S L = length of S = slope of K = ground c	0 0 0 0.00 Fc (overland) + Tc S)] I segment (#) segment (#eut/foo) vover coefficient (#)	Tc (C) = Tc(A+B) Tc(tot.) Intensity (gutter)
n: 0 #2 ime nc. ec.) *60)	10.68 .635 #3 Intensity (in./hr.) 3.84 2.47 1.91 1.59 1.38 1.23	Ouflow Rate: (assumed) #4 Q dev. (cfs) (A*C*#3) 0.42 0.42 0.27 0.24 0.48 0.45 0.44	#5 V in (cu. ft.) 171 171 171 171 212 212 229 245	#6 V out (cu. ft.) (Ouff.*#2) 1.50 1.50 3.00 4.50 6.00 7.50	#7 Storage (cu. ft.) (#5-#6) 169 189 189 207 222 223 237	L(B) = K(B) = S(B) = Tc (B) = Tc (total) = T T = L / [K/(S L = length of S = slope of K = ground c	0 0 0 0.00 Fc (overland) + Tc S)] I segment (#) segment (#eut/foo) vover coefficient (#)	Tc (C) = Tc(A+B) Tc(tot.) Intensity (gutter)
n: 0 #2 ime nc. ec.) *60)	10.68 .635 #3 Intensity (in./hr.) 3.84 2.47 1.91 1.59 1.38 1.23	Ouflow Rate: (assumed) #4 Q dev. (cfs) (A*C*#3) 0.42 0.42 0.27 0.24 0.48 0.45 0.44	#5 V in (cu. ft.) 171 171 192 212 229 245	#6 V out (cu. ft.) (Ouff.*#2) 1.50 1.50 3.00 4.50 6.00 7.50	#7 Storage (cu. ft.) (#5-#6) 169 189 189 207 222 223 237	K(B) = S(B) = Tc (B) = Tc (total) = T Tc = L / [K\(S) L = length of S = slope of: K = ground c	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tc(A+B) Tc(tot.): Intensity (gutter)
n: 0 #2 ime nc. ec.) *60)	10.68 .635 #3 Intensity (in./hr.) 3.84 2.47 1.91 1.59 1.38 1.23	(assumed) #4 Q dev. (cfs) (A*C*#3) 0.42 0.42 0.27 0.24 0.18 0.15 0.14	#5 V in (cu. ft.) 171 471 492 242 229 245	V out (cu. ft.) (Outf.*#2) 1.50 1.50 3.00 4.50 6.00 7.50	Storage (cu. ft.) (#5-#6) 169 489 207 223 237	K(B) = S(B) = Tc (B) = Tc (total) = T Tc = L / [K\(S) L = length of S = slope of: K = ground c	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tc(A+B) Tc(tot.): Intensity (gutter)
n: 0 #2 ime nc. ec.) *60)	#3 Intensity (in./hr.) 3.84 2.47 1.91 1.59 1.38 1.22	#4 Q dev. (cfs) (A*C*#3) 0.42 0.27 0.24 0.18 0.15	#5 V in (cu. ft.) 171 171 174 192 242 229 245	V out (cu. ft.) (Outf.*#2) 1.50 1.50 3.00 4.50 6.00 7.50	Storage (cu. ft.) (#5-#6) 169 489 207 223 237	K(B) = S(B) = Tc (B) = Tc (total) = T Tc = L / [K\(S) L = length of S = slope of: K = ground c	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Tc(A+B) Tc(tot.) Intensity (gutter)
n: 0 #2 ime nc. ec.) *60)	#3 Intensity (in./hr.) 3.84 2.47 1.91 1.59 1.38 1.22	Q dev. (cfs) (A*C*#3) 0.42 0.27 0.21 0.18 0.15 0.14	V in (cu. ft.) 171 171 171 192 212 229 245	V out (cu. ft.) (Outf.*#2) 1.50 1.50 3.00 4.50 6.00 7.50	Storage (cu. ft.) (#5-#6) 169 489 207 223 237	S(B) = Tc (B) = Tc (total) = T Tc = L / [K:\(t = length of S = slope of K = ground c = t = t = t = t = t = t = t = t = t =	0 0.00 Tc (overland) + Tc: S)] I segment (ft) segment (feet/fooicover coefficient (ft)	Tc(A+B) Tc(tot.): Intensity (gutter)
#2 ime nc. ec.) *60) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	#3 Intensity (in./hr.) 3.84 2.47 1.91 1.59 1.28 1.22	Q dev. (cfs) (A*C*#3) 0.42 0.27 0.21 0.18 0.15 0.14	V in (cu. ft.) 171 171 171 192 212 229 245	V out (cu. ft.) (Outf.*#2) 1.50 1.50 3.00 4.50 6.00 7.50	Storage (cu. ft.) (#5-#6) 169 489 207 223 237	Tc (B) = Tc (total) = T Tc = L / [K\(\frac{1}{3}\)(\fra	0.00 Tc (overland) + Tc (S)] segment (ft) segment (feet/foo) cover coefficient (ft)	Tc(tot.): Intensity (gutter) (t)
me nc. ec.) *60) 	3.84 3.84 2.47 1.91 1.59 1.38 1.23	Q dev. (cfs) (A*C*#3) 0.42 0.27 0.21 0.18 0.15 0.14	V in (cu. ft.) 171 171 171 192 212 229 245	V out (cu. ft.) (Outf.*#2) 1.50 1.50 3.00 4.50 6.00 7.50	Storage (cu. ft.) (#5-#6) 169 489 207 223 237	Tc (total) = T Tc = L / [K\](\) L = length of S = slope of c K = ground c	Tc (overland) + Tc S)] f segment (ft) segment (feet/fool cover coefficient (fi	Intensity (gutter) t) ft/min)
nc. ec.) 1*60) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	3.84 3.84 2.47 1.91 1.59 1.38 1.23	(cfs) (A*C*#3) 0.42 0.42 0.27 0.21 0.18 0.15	(cu. ft.) 171 171 171 192 212 229 245	(cu. ft.) (Outf.*#2) 1.50 1.50 3.00 4.50 6.00 7.50	(cu. ft.) (#5-#6) 169 189 189 207 223 237	Tc (total) = T Tc = L / [K\](\) L = length of S = slope of c K = ground c	Tc (overland) + Tc S)] f segment (ft) segment (feet/fool cover coefficient (fi	Intensity (gutter) t) ft/min)
nc. ec.) 1*60) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	3.84 3.84 2.47 1.91 1.59 1.38 1.23	(cfs) (A*C*#3) 0.42 0.42 0.27 0.21 0.18 0.15	(cu. ft.) 171 171 171 192 212 229 245	(cu. ft.) (Outf.*#2) 1.50 1.50 3.00 4.50 6.00 7.50	(cu. ft.) (#5-#6) 169 189 189 207 223 237	Tc = L / [K√(s L = length of S = slope of K = ground c	S)] f segment (ft) segment (feet/foor cover coefficient (fi	(gutter) t) t/min)
ec.) 1*60) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	3.84 2.47 1.91 1.59 1.38 1.23	0.42 0.42 0.27 0.21 0.18 0.15 0.14	171 171 192 212 220 245	(Outf.*#2) 1.50 1.50 3.00 4.50 6.00 7.50	(#5-#6) 169 189 189 207 223 237	Tc = L / [K√(s L = length of S = slope of K = ground c	S)] f segment (ft) segment (feet/foor cover coefficient (fi	t) t/min)
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3.84 2.47 1.91 1.59 1.38 1.23	0.42 0.42 0.27 0.21 0.18 0.15 0.14	171 171 192 212 220 245	(Outf.*#2) 1.50 1.50 3.00 4.50 6.00 7.50	(#5-#6) 169 189 189 207 223 237	Tc = L / [K√(s L = length of S = slope of K = ground c	S)] f segment (ft) segment (feet/foor cover coefficient (fi	t) t/min)
0.00 0.00 100 100 100 200 500	3.84 2.47 1.91 1.59 1.38 1.23	0.42 0.42 0.27 0.21 0.18 0.15 0.14	171 192 212 229 245	1.50 1.50 3.00 4.50 6.00 7.50	169 189 207 223 237	Tc = L / [K√(s L = length of S = slope of K = ground c	S)] f segment (ft) segment (feet/foor cover coefficient (fi	t) t/min)
100 100 100 200 500	3.84 2.47 1.91 1.59 1.38 1.23	0.42 0.27 0.21 0.18 0.15 0.14	171 192 212 229 245	1.50 3.00 4.50 6.00 7.50	169 189 207 223 237	L = length of S = slope of K = ground c	f segment (ft) segment (feet/foor cover coefficient (ft	t/min)
100 100 200 500	2.47 1.91 1.59 1.38 1.23	0.27 0.21 0.18 0.15 0.14	192 212 229 245	3.00 4.50 6.00 7.50	189 207 223 237	S = slope of : K = ground c	segment (feet/foor cover coefficient (fi	t/min)
100 200 500	2.47 1.91 1.59 1.38 1.23	0.21 0.18 0.15 0.14	192 212 229 245	3.00 4.50 6.00 7.50	207 223 237	K = ground c	cover coefficient (fi	t/min)
2 00 500	1.91 1.59 1.38 1.23	0.21 0.18 0.15 0.14	212 229 245	4.50 6.00 7.50	223 237			
2 00 500	1.59 1.38 1.23	0.18 0.15 0.14	229 245	6.00 7.50	223 237			
500	1.38 1.23	0.15 0.14	245	7.50	237			
	1.23	0.14						
800								
100	1.12	0.12	271	10.50	261			
100	1.03	0.11	283	12.00	271			
700	0.95	0.11	294	13.50	281			
200	0.89	0.10	305	15.00	290			
300	0.84	0.09	315	16.50	298			
600	0.79	0.09	324	18.00	306			
900	0.75	0.08	333	19.50	314			
200	0.72	0.08	342	21.00	321			
500	0.69	0.08	350	22.50	327			
BOO	0.66	0.07	358	24.00	334			
100	0.64	0.07	365	25.50	340			
100	0.61	0.07	372	27.00	345			
700		0.07	379	28.50				
900								
000								
400								
700	0.17	0.02		208.50	564			
9200								
CULATION	s	0.01	1502					
			Drovidod:					
quiromosto	,	•	r roviucu.	440./0	ou. n.			
92 00 41 71 92 00 00 01	00 00 00 00 00 00 VLATION Required	0 0.57 00 0.18 00 0.17 00 0.17 00 0.05 **LATIONS** Required [ef] = 1433*A Required [ef] = 1815*A litements	0 9-57 9-06 00 0-18 0.02 20 0-17 0.02 00 0-17 0.02 00 0-05 0.01 **LATIONS** Required [cf] = 1133*A Required [cf] = 1816*A irrements	0 0.57 0.06 386 0.02 732 0.0 0.18 0.02 771 0.02 771 0.02 773 0.0 0.17 0.02 773 0.0 0.05 0.01 1502 0.05 0.01 1502 0.05 0.01 0.05 0.05	0 0.57 0.06 386 30.00 00 0.18 0.02 732 180.00 00 0.17 0.02 771 207.00 00 0.05 0.01 1502 1296.00 LATIONS Required [cf] = 1815*A remember 1815*A Provided: Provided: 448.75	0 0.57 0.06 386 30.00 366 20 0.18 0.02 732 180.00 552 20 0.17 0.02 771 207.00 564 20 0.17 0.02 773 208.50 564 20 0.05 0.01 1502 1296.00 206 206 206 206 206 206 206 206 206 2	0 0.57 0.06 386 30.00 356 10 0.18 0.02 732 180.00 552 10 0.17 0.02 771 207.00 564 10 0.17 0.02 773 208.50 564 10 0.05 0.01 1502 1296.00 206 **LATIONS** Required [cf] = 1133*A 100 cu. ft. 160 c	0

STORHAUG ENGINEERING Basin 4 (N)

881 cu. ft. 996 cu. ft.

48.94 HRS 48.94 HRS Excess Storage 114.64

Provided:

Time for disposal of Full Storm Event @ 0.0196 CFS
Total Volume / Rate = Time >>>
Time for disposal of Surface Water (Volume above Pond)
Volume of Pond / Rate = Time >>>

Site	0.23	Acres		9951	s.f.		
	Areas (Ac.)	"C"	A*C	Areas (s.f.)	Treat?		
Paved	0.09	0.900	0.0795	3850	Υ		
Driveway	0.00	0.900	0.0000	0	Υ		
Sidewalk	0.00	0.900	0.0000	0	N		
Building	0.00	0.900	0.0000	0	N		
Landscape	0.14	0.220	0.0308	6101	N		
	Total A	Comp "C"	Qpeak	1			
Total Site	0.23	0.48	0.42				
Connected Impervious	0.09	0.90	0.31	•			
ND VOLUMES							
	Bottom	Depth	208	Depth	Top		
	Elevation	to 208	Elevation	to Top	Elevation	208	Storage

OND VOLUMES	Bottom Flevation	Depth to 208	208 Elevation	Depth to Top	Top Elevation	208	Storage
Swale	Area	Elevation	Area	Elevation	Area	Volume	Volume
Number	(sf)	(ft)	(sf)	(ft)	(sf)	(cf)	(cf)
Swale N	807	0.50	988	1.0	1184	448.75	995.5
Gallery	Length (ft)	Width (ft)	Depth (ft)	Pipe Dia (in)	Voids %		
						448.75	996

PEAK RUNOFF VOLUME	(50-YR S	TORM, SCS M	ETHOD)		
	Areas (Ac.)	CN	A*C		
Paved	0.09	98	8.662	P(50) =	2.2 in
Driveway	0.00	98	0.000	S =	1.50
Sidewalk	0.00	98	0.000	Total Runoff Depth(Q50) =	1.06 in
Building	0.00	98	0.000	Total Storm Volume (V) =	881 cf
Landscape	0.14	80	11.205	*Class D Soils w/ >75% Grass Cover	

*Class D Soils w/ 30%-70% ground cover (Herbaceous)

11-131 Cheney Elementary

Total A Comp "C" 0.23 86.96

0.00 0.17 5.00 3.84

POST DEVELOPMENT

CALCULATIONS

(INDIVIDUAL SUB-BASINS)

RATIONAL & SCS METHOD	PROJECT: 25-121 Clark 53rd
DETENTION BASIN DESIGN	BASIN: A
	REVIEWER: AJS
Design Year: 50	DESIGNER: SCE
	DATE: 10/28/2025

								ONCENTRATIO	
0.8	Orifice Outflow	0.0196					Tc (overland)	Tc (gut
			5.00 0.81				L(A) = K(A) S(A) =	10 420 0.0194	L(C) = K(C) = S(C) =
			0.62						
)							Tc (A) =	0.17	Tc (C)
	0-16 411			Storm:	1438	i			
	Orifice Allowable	Ouriow Rate:					I (D) -	0	
m	10.68		0.50						Tc (C)
							S(B) =	0	Tc(A+E
#2	#3	#4	#5	#6	#7	-	Tc (B) =	0.00	Tc(tot.
	Intensity	Q dev.	V in	V out	Storage				Intensi
	(in /hr)	(cfe)	(cu.ft.)	(cu ft)	(cu.ft.)				
#1*60)	(111.7111.)	(A*C*#3)	(cu. ii.)	(Outf.*#2)	(#5-#6)				-
00.00	3.84	1.93	774	5.88	768	-	Tc = L / [K√(S)]	· Ic (gutter)
							-OCC TABLE C	-0 or or con in	i it values
2100									
2400	1.03	0.51	1286	47.05	1239				
2700	0.95	0.48	1337	52.94	1284				
3000	0.89	0.45	1384	58.82	1325				
		0.42							
6000	0.57	0.29			1635				
36000	0.18	0.09	3324	705.82	2619				
11400	0.17	0.08	3497	811.69	2685				
1700	0.17	0.08	3506	817.57	2689				
59200	0.05	0.03	6817	5081.87	1735	-			
	#2 #2	Orifice Allowable m: 10.68 n: 0.635 #2 #3 Tirme Intensity Inc. sec.) (in./hr.) #1160) 00.00 3.84 900 3.84 900 1.91 1200 1.98 1400 1.98	208: Orifice Allowable Outflow Rate: m: 10.68 n: 0.635 #2 #3 #4 Inime Intensity Q dev. Inc. sec.) (in./hr.) (cfs) t1160) 1160) 300 3.84 1.93 300 3.84 1.93 300 3.84 1.93 300 3.84 1.93 300 3.84 1.93 300 3.84 1.93 300 3.84 1.93 300 3.84 1.93 300 3.84 1.93 300 3.84 1.93 300 3.85 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.9	0.81 0.62 0.25 0.70ffice Allowable Ouflow Rate: 0.20 0.25 0.0196 0.50 m: 10.68 n: 0.635 #2 #3 #4 #5 Time Intensity Q dev. V in Inc. sec.) (cfs) (cu. ft.) 1160) (a^*C*#3) 00.00 3.84 1.93 774 300 3.84 1.93 774 300 3.84 1.93 774 300 3.84 1.93 774 300 3.84 1.93 174 300 1.94 1.94 1.94 300 1.95 0.96 1.98 1.98 3090 1.96 1.98 1.98 3090 0.96 1.98 1.98 3090 0.97 0.96 1.98 3090 0.76 0.38 1.98 3090 0.76 0.38 1.98 3090 0.77 0.38 1.98 3090 0.78 0.38 1.98 3090 0.79 0.40 1.47 3000 0.64 0.32 1.65 3000 0.69 0.34 1.68 3000 0.69 0.34 1.68 3000 0.69 0.30 1.72 3000 0.59 0.30 1.72 3000 0.17 0.98 3897 3497	0.81 0.62 0.25 0.25 0.71fice Allowable Outflow Rate: 0.0996 m: 10.68 n: 0.635 #2 #3 #4 #5 #6 11mensity Q dev. V in V out lnc. sec.) (A'C'#3) (cu. ft.) (cu ft.) (10.4 ** ** ** ** ** ** ** ** ** ** ** ** **	0.81	0.81	0.81	0.81

54.42 HRS 44.38 HRS

Total Volume / Rate = Time >>>
Time for disposal of Surface Water (Volume above Pond)
Volume of Pond / Rate = Time >>>

STORHAUG ENGINEERING Basin A 11-131 Cheney Elementary

CONTRIBUTING AREAS Site 0.81 Acres 35326 s.f. Areas "C" A*C Areas (s.f.) Treat? (Ac.) 0.25 0.900 0.900 0.900 0.900 0.220 0.2224 0.0064 0.0563 0.1417 0.0741 Paved Driveway Sidewalk 10765 0.25 0.01 0.06 0.16 0.34 308 2724 6860 14669 Y N N Building Landscape Total A 0.81 0.25 Comp "C" 0.62 Qpeak 1.93 Total Site Connected Impervious 0.90

	Bottom	Depth	208	Depth	Top		
	Elevation	to 208	Elevation	to Top	Elevation	208	Storage
Swale	Area	Elevation	Area	Elevation	Area	Volume	Volume
Number	(sf)	(ft)	(sf)	(ft)	(sf)	(cf)	(cf)
A1	475	0.50	1310	0.5	1310	446.25	446.25
A2	150	0.50	336	0.5	336	121.5	121.5
A3	165	0.50	379	0.5	379	136	136
A4	25	0.50	81	0.5	81	26.5	26.5
	Length	Width	Depth	Pipe Dia	Voids		
Gallery	(ft)	(ft)	(ft)	(in)	%		
A	410	1.57	2	12	40%	0	708.2
						730.25	1438

	Areas (Ac.)	CN	A*C		
Paved	0.25	98	24.219	P(50) =	2.2 in
Driveway	0.01	98	0.693	S =	1.05
Sidewalk	0.06	98	6.128	Total Runoff Depth(Q50) =	1.30 in
Building	0.16	98	15.433	Total Storm Volume (V) =	3841 cf
Landscape	0.34	80	26.940	*Class D Soils w/ >75% Grass Cover	
				*Class D Soils w/ 30%-70% ground cover	(Herbaceous)
	Total A 0.81	Comp "C" 90.53		·	

ORIFICE DISPOSAL	RATE

0.00

0.00 0.17 5.00 3.84

C (Orifice Coefficient)	0.61	
Orifice Diameter	0.65 in	
Water Depth Above Orifice	3.00 ft	
Orifice Disposal Rate	0.0196 cfs	See orifice calculations for more information

RATIONAL & SCS METHOD	PROJECT: 25-121 Clark 53rd
DETENTION BASIN DESIGN	BASIN: B
	REVIEWER: AJS
Design Year: 50	DESIGNER: SCE
-	DATE: 10/28/2025

						DAIL	. 10/20/2023			
RUNOFF STORA	AGE						_	TIME OF C	ONCENTRATION	V (minutes)
-Single (Type A) Exfiltration (cfs)	0.3	Orifice Outflow	0.0196					Tc (overland	d)	Tc (gutter)
Time of Conc. (m			0.0130	5.00				L(A) = K(A)	10 420	L(C) = K(C) =
Area (Acres) Composite "C"				0.27 0.54				S(A) =	0.0194	S(C) =
208 Treated Area Volume Provided			208:	0.13 584.5	Storm:	1267	,	Tc (A) =	0.17	Tc (C) =
Outflow (cfs)	ı	Orifice Allowable		0.0196	Storii.	1207		. (5)		
Area * C" Factor Coef. of Intensity	m:	10.68		0.15				L(B) = K(B) =	0	Tc (C) =
,	n:	0.635						S(B) =	0	Tc(A+B) =
#1	#2	#3	#4	#5	#6	#7	-	Tc (B) =	0.00	Tc(tot.) =
Time Inc.	Time Inc.	Intensity	Q dev.	V in	V out	Storage				Intensity =
(min.)	(sec.) (#1*60)	(in./hr.)	(cfs) (A*C*#3)	(cu. ft.)	(cu. ft.) (Outf.*#2)	(cu. ft.) (#5-#6)				
5.00	300.00	3.84	0.57	227	5.88	221	-	Tc (total) = Tc = L / [K√	Tc (overland) + 1 (S)]	Гс (gutter)
5	300	3.84	0.57	227	5.88	221			f segment (ft)	ant)
10	600	2.47	0.36	255	3.00 11.76	244			f segment (feet/fi cover coefficient	
		2.47 1.91	0.28							
15	900			282	17.65	264 282		-See Table	5-6 of SRSM for	K values
20	1200	1.59	0.23	305	23.53					
25	1500	1.38	0.20	326	29.41	296				
30	1800	1.23	0.18	345	35.29	309				
35	2100	1.12	0.16	362	41.17	320				
40	2400	1.03	0.15	378	47.05	330				
45	2700	0.95	0.14	392	52.94	339				
50	3000	0.89	0.13	406	58.82	347				
55	3300	0.84	0.12	419	64.70	355				
60	3600	0.79	0.12	432	70.58	361				
65	3900	0.75	0.11	444	76.46	367				
70	4200	0.72	0.11	455	82.35	373				
					88.23	378				
75	4500	0.69	0.10	4 66						
80	4800	0.66	0.10	476	94.11	382				
85	5100	0.64	0.09	486	99.99	386				
90	5400	0.61	0.09	496	105.87	390				
95	5700	0.59	0.09	505	111.75	394				
100	6000	0.57	0.08	515	117.64	397				
600	36000	0.18	0.03	976	705.82	270				
690	41400	0.17	0.02	1027	811.69	215				
695	41700	0.17	0.02	1029	817.57	212				
4320	259200	0.05	0.01	2001	5081.87	-3081	=			
208 SWALE POP	ND CALCULATION									
	*Volume Require				146					
	Volume Require				233 (
*Must meet SRSI	M soil requiremen	ts.	-	Provided:	584.5 (ou. ft.				
		YEAR DESIGN ST								
I	Maximum storage	required by SCS N		itire storm) = Provided:	1146 (1267 (Excess Storag	€ 121.04		
	Time for disposa	l of Full Storm Eve	nt @ 0.0196 CF	S						
	·		I Volume / Rate	= Time >>>	16.23	HRS				
			e of Pond / Rate		6.57	HRS				

STORHAUG ENGINEERING Basin B

CONTRIBUTING AREAS

0.00 0.17 5.00 3.84

Site	0.27	Acres		11818 9	s.f.
	Areas (Ac.)	"C"	A*C	Areas (s.f.)	Treat?
Paved	0.11	0.900	0.0963	4662	Υ
Driveway	0.02	0.900	0.0193	933	Υ
Sidewalk	0.00	0.900	0.0000	0	N
Building	0.00	0.900	0.0000	0	N
Landscape	0.14	0.220	0.0314	6223	N
	Total A	Comp "C"	Qpeak	1	
Total Site	0.27	0.54	0.57		
Connected Impervious	0.13	0.90	0.44	•	

POND VOLUMES							
	Bottom	Depth	208	Depth	Top		
	Elevation	to 208	Elevation	to Top	Elevation	208	Storage
Swale	Area	Elevation	Area	Elevation	Area	Volume	Volume
Number	(sf)	(ft)	(sf)	(ft)	(sf)	(cf)	(cf)
B1	230	0.50	583	0.5	583	203.25	203.25
B2	236	0.50	634	0.5	634	217.5	217.5
B3	89	0.50	195	0.5	195	71	71
B4	31	0.50	340	0.5	340	92.75	92.75
	Length	Width	Depth	Pipe Dia	Voids		
Gallery	(ft)	(ft)	(ft)	(in)	%		
В	395	1.57	2	12	40%	0	682.3
						584.5	1267

PEAK RUNOFF VOLUME	(50-YR S	TORM, SCS N	METHOD)			_
	Areas (Ac.)	CN	A*C			
Paved	0.11	98	10.488	P(50) =	2.2 in	
Driveway	0.02	98	2.099	S =	1.30	
Sidewalk	0.00	98	0.000	Total Runoff Depth(Q50) =	1.16 in	
Building	0.00	98	0.000	Total Storm Volume (V) =	1146 cf	_

ORIFICE DISPOSAL RATE

C (Orifice Coefficient)	0.61		
Orifice Diameter	0.65	in	
Water Depth Above Orifice	3.00	ft	
Orifice Disposal Rate	0.0196	cfs	See orifice of

e orifice calculations for more information

11-131 Cheney Elementary

RATIONAL & SCS METHOD DETENTION BASIN DESIGN	PROJECT: 25-121 Clark 53rd BASIN: C
	REVIEWER: AJS
Design Year: 50	DESIGNER: SCE
	DATE: 10/28/2025

RUNOFF STORA	GE							TIME OF C	ONCENTRATION	(minutes)
Single (Type A) Exfiltration (cfs)	0.3	Orifice Outflow	0.0196					Tc (overland	d)	Tc (gutter)
Time of Conc. (mi Area (Acres) Composite "C"	n)			5.00 1.22 0.70				L(A) = K(A) S(A) =	10 420 0.0194	L(C) = K(C) = S(C) =
208 Treated Area Volume Provided Outflow (cfs)	(acres)	Orifice Allowable	208: Ouflow Rate:	0.52 1528.5 0.0196	Storm:	8512		Tc (A) =	0.17	Tc (C) =
Area * C" Factor Coef. of Intensity		10.68 0.635	ounon riaco.	0.86				L(B) = K(B) = S(B) =	0 0 0	Tc (C) = Tc(A+B) =
							_			
#1 Time	#2 Time	#3 Intensity	#4 Q dev.	#5 V in	#6 V out	#7 Storage		Tc (B) =	0.00	Tc(tot.) = Intensity =
Inc. (min.)	Inc. (sec.) (#1*60)	(in./hr.)	(cfs) (A*C*#3)	(cu. ft.)	(cu. ft.) (Outf.*#2)	(cu. ft.) (#5-#6)				
5.00	300.00	3.84	3.31	1330	5.88	1324	-	Tc = L / [K√		(gutter)
<u>5</u>	300	3.84	3.31	1330	5.88	1324			f segment (ft) f segment (feet/foc	of)
10	600	2.47	2.13	1495	11.76	1484			cover coefficient (
15	900	1.91	1.65	1650	17.65	1632		-See Table	5-6 of SRSM for "I	K" values
20	1200	1.59	1.37	1786	23.53	1763				
25	1500	1.38	1.19	1907	29.41	1878				
30	1800	1.23	1.06	2017	35.29	1982				
35	2100	1.12	0.96	2117	41.17	2076				
4 0	2400 2700	1.03	0.88 0.82	2210 2297	4 7.05	2163 2244				
45 50		0.95 0.89	0.82 0.77	2297 2378	52.94					
50 55	3000 3300	0.89	0.77 0.72	2378 2455	58.82 64.70	2319 2390				
60	3600	0.79	0.68	2100 2528	70.58	2350 2457				
65	3900	0.75	0.65	2525 2597	76.46	2521				
70	4200	0.72	0.62	2664	82.35	2581				
75	4500	0.69	0.59	2727	88.23	2639				
80	4800	0.66	0.57	2788	94.11	2694				
85	5100	0.64	0.55	2847	99.99	2747				
90	5400	0.61	0.53	2904	105.87	2798				
95	5700	0.59	0.51	2959	111.75	2847				
100	6000	0.57	0.49	3012	117.64	2895				
600	36000	0.18	0.16	5713	705.82	5007				
690	41400	0.17	0.14	6010	811.69	5198				
695	41700	0.17	0.14	6025	817.57	5208	_			
4320	259200	0.05	0.05	11714	5081.87	6633	_			
208 SWALE PON		NS ed [cf] = 1133*A			584 (ou. ft.				
	Volume Require				936					
*Must meet SRSN			ŧ	Provided:	1528.5 (
STORAGE REQU	IIREMENTS - 50	-YEAR DESIGN ST	ORM							
		e required by SCS I	Method (store en	tire storm) = Provided:	6583 (8512 (Excess Storage	1928.49		
	Time for dispose	al of Full Storm Eve	nt @ 0.0196 CF	S						
			al Volume / Rate	= Time >>>	93.27	HRS				
	o for dioposi		e of Pond / Rate		34.66	HRS				

STORHAUG ENGINEERING Basin C 11-131 Cheney Elementary

CONTRIBUTING AREAS

0.00 0.17 5.00 3.84

Site	1.22 Acres		Site 1.22 Acres			53344 s	s.f.
	Areas (Ac.)	"C"	A*C	Areas (s.f.)	Treat?		
Paved	0.26	0.900	0.2377	11505	Υ		
Driveway	0.25	0.900	0.2263	10953	Y		
Sidewalk	0.01	0.900	0.0113	548	N		
Building	0.34	0.900	0.3073	14874	N		
Landscape	0.36	0.220	0.0781	15464	N		
	Total A	Comp "C"	Qpeak	1			
Total Site	1.22	0.70	3.31				
Connected Impervious	0.52	0.90	1.78	•			

POND VOLUMES							
	Bottom	Depth	208	Depth	Top		
	Elevation	to 208	Elevation	to Top	Elevation	208	Storage
Swale	Area	Elevation	Area	Elevation	Area	Volume	Volume
Number	(sf)	(ft)	(sf)	(ft)	(sf)	(cf)	(cf)
C1	1357	1.00	1700	2.8	1768	1528.5	4375
	Length	Width	Depth	Pipe Dia	Voids		
Gallery	(ft)	(ft)	(ft)	(in)	%		
С	98	21	5.00	8	40%	0	4136.5
						1528.5	8512

PEAK RUNOFF VOLUME (50-YR STORM, SCS METHOD)

Areas	CN	A*C			
(Ac.)					
0.26	98	25.884	P(50) =	2.2 in	
0.25	98	24.642	S =	0.78	
0.01	98	1.233	Total Runoff Depth(Q50) =	1.48 in	
0.34	98	33.463	Total Storm Volume (V) =	6583 cf	٦
0.36	80	28.400	*Class D Soils w/ >75% Grass Cover		_
			*Class D Soils w/ 30%-70% ground cove	r (Herbaceous)	
	(Ac.) 0.26 0.25 0.01 0.34	(Ac.) 0.26 98 0.25 98 0.01 98 0.34 98 0.36 80	(Ac.) 0.26 98 25.884 0.25 98 24.642 0.01 98 1.233 0.34 98 33.463 0.36 80 28.400	(Ac.) 0.26 98 25.884 P(50) = 0.25 98 24.642 S = 0.01 98 1.233 Total Runoff Depth(QS0) = 0.34 98 33.463 Total Storm Volume (V) = 0.36 80 28.400 *Class D Soils w/ >75% Grass Cover *Class D Soils w/ 30%-70% ground cove	(Ac.) 0.26 98 25.884 P(50) = 2.2 in 0.25 98 24.642 S = 0.78 0.01 98 1.233 Total Runoff Depth(Q50) = 1.48 in 0.34 98 33.463 Total Storm Volume (V) = 6583 cf 0.36 80 28.400 *Class D Soils w/ >75% Grass Cover **Class D Soils w/ >75% Ground cover (Herbaceous)

Total A Comp "C" 1.22 92.78

ORIFICE DISPOSAL RATE

C (Orifice Coefficient)	0.61		
Orifice Diameter	0.65	in	
Vater Depth Above Orifice	3.00	ft	

Orifice Disposal Rate 0.0196 cfs See orifice calculations for more information

RATIONAL & SCS METHOD	PROJECT: 25-121 Clark 53rd
DETENTION BASIN DESIGN	BASIN: D
	REVIEWER: AJS
Design Year: 50	DESIGNER: SCE
	DATE: 10/28/2025

						5,112	. 10/20/2023			
RUNOFF STORAG	GE						_	TIME OF CO	NCENTRATION (minutes)
Single (Type A) Exfiltration (cfs)	0 0.3	Orifice Outflow	0.0196					Tc (overland)	Tc (gutter)
Time of Conc. (mir Area (Acres)	n)			5.00 0.12				L(A) = K(A) S(A) =	10 420 0.0194	L(C) = K(C) = S(C) =
Composite "C" 208 Treated Area Volume Provided	(acres)		208:	0.50 0.05 292.25	Storm:	518	ı	Tc (A) =	0.17	Tc (C) =
Outflow (cfs) Area * C" Factor		Seepage	Ouflow Rate: (assumed)	0.0050 0.06				L(B) =	0	
Coef. of Intensity		10.68 0.635	(assumeu)	0.00				K(B) = S(B) =	0	Tc (C) = Tc(A+B) =
#1	#2	#3	#4	#5	#6	#7	-	Tc (B) =	0.00	Tc(tot.) =
Time Inc.	Time Inc.	Intensity	Q dev.	V in	V out	Storage		. ,		Intensity =
(min.)	(sec.) (#1*60)	(in./hr.)	(cfs) (A*C*#3)	(cu. ft.)	(cu. ft.) (Outf.*#2)	(cu. ft.) (#5-#6)				
5.00	300.00	3.84	0.24	95	1.50	94	-	Tc = L / [K√((gutter)
5	300	3.84	0.24	95	1.50	94			segment (ft) segment (feet/foo	t)
10	600	2.47	0.15	107	3.00	104			cover coefficient (f	
15	900	1.91	0.12	118	4.50	114			6-6 of SRSM for "K	
20	1200	1.59	0.10	128	6.00	122				
25	1500	1.38	0.09	137	7.50	129				
30	1800	1.23	0.08	144	9.00	135				
35	2100	1.12	0.07	152	10.50	141				
40	2400	1.03	0.06	158	12.00	146				
45	2700	0.95	0.06	164	13.50	151				
50	3000	0.89	0.05	170	15.00	155				
55	3300	0.84	0.05	176	16.50	159				
60	3600	0.79	0.05	181	18.00	163				
65	3900	0.75	0.05	186	19.50	166				
70	4200	0.72	0.04	191	21.00	170				
75	4500	0.69	0.04	195	22.50	173				
80	4800	0.66	0.04	200	24.00	176				
85	5100	0.64	0.04	204	25.50	178				
90	5400	0.61	0.04	208	27.00	181				
95	5700	0.59	0.04	212	28.50	483				
100	6000	0.57	0.04	216	30.00	186				
600	36000	0.18	0.01	409	180.00	229				
690	41400	0.17	0.01	430	207.00	223				
695 4320	41700 259200	0.17 0.05	0.01	431 839	208.50 1296.00	223 -457	=			
208 SWALE PON			0.00	****	1280.00	-101				
	*Volume Require				58 (cu. ft.				
	Volume Require					cu. ft.				
*Must meet SRSM	soil requiremen	ts	1	Provided:	292.25 (cu. ft.				
STORAGE REQU	IREMENTS - 50-	YEAR DESIGN ST	ORM							
M	laximum storage	required by SCS N		tire storm) = Provided:	487 (518 (Excess Storage	€ 30.55		
	Time for disposa	l of Full Storm Eve	nt @ 0.0196 CF	S						
			al Volume / Rate	= Time >>>	27.06	HRS				
	s for disposa		e of Pond / Rate		14.54	HRS				

STORHAUG ENGINEERING Basin D

CONTRIBUTING AREAS

0.00 0.17 5.00 3.84

Site	0.12	Acres		5326	s.f.	
	Areas (Ac.)	"C"	A*C	Areas (s.f.)	Treat?	
Paved	0.05	0.900	0.0460	2224	Υ	
Driveway	0.00	0.900	0.0000	0	Y	
Sidewalk	0.00	0.900	0.0000	0	N	
Building	0.00	0.900	0.0000	0	N	
Landscape	0.07	0.220	0.0157	3102	N	
	Total A	Comp "C"	Qpeak	1		
Total Site	0.12	0.50	0.24			
Connected Impervious	0.05	0.90	0.18	•		

POND VOLUMES							
	Bottom	Depth	208	Depth	Top		
	Elevation	to 208	Elevation	to Top	Elevation	208	Storage
Swale	Area	Elevation	Area	Elevation	Area	Volume	Volume
Number	(sf)	(ft)	(sf)	(ft)	(sf)	(cf)	(cf)
D1	158	0.50	373	0.5	373	132.75	132.75
D2	78	0.50	200	0.5	200	69.5	69.5
D3	63	0.50	184	0.5	184	61.75	61.75
D4	20	0.50	93	0.5	93	28.25	28.25
	Length	Width	Depth	Pipe Dia	Voids		
Gallery	(ft)	(ft)	(ft)	(in)	%		
D	164	1.57	2	6	40%	0	225.3
						292.25	518

	Areas (Ac.)	CN	A*C		
Paved	0.05	98	5.003	P(50) =	2.2 in
Driveway	0.00	98	0.000	S =	1.43
Sidewalk	0.00	98	0.000	Total Runoff Depth(Q50) =	1.10 in
Building	0.00	98	0.000	Total Storm Volume (V) =	487 cf
Landscape	0.07	80	5.697	*Class D Soils w/ >75% Grass Cover	
				*Class D Soils w/ 30%-70% ground cover	(Herbaceous
	Total A	Comp "C"		· ·	
	0.12	87.52			

ORIFICE DISPOSAL RATE

C (Orifice Coefficient)	0.61	
Orifice Diameter	0.65	in
Water Depth Above Orifice	3.00	ft
Orifice Disposal Rate	0.0196	cfs

11-131 Cheney Elementary

RATIONAL & SCS METHOD	PROJECT: 25-121 Clark 53rd
DETENTION BASIN DESIGN	BASIN: E
	REVIEWER: AJS
Design Year: 50	DESIGNER: SCE
-	DATE: 10/28/2025

							_			
RUNOFF STORA	4GE							TIME OF C	ONCENTRATION	(minutes)
-Single (Type A) Exfiltration (cfs)	(9 Orifice Outflow	0.0196					Tc (overland	·	Tc (gutter)
Time of Conc. (m Area (Acres) Composite "C"	nin)			5.00 0.10 0.73				L(A) = K(A) S(A) =	10 420 0.0194	L(C) = K(C) = S(C) =
208 Treated Area Volume Provided		_	208:	0.06 130	Storm:	1044		Tc (A) =	0.17	Tc (C) =
Outflow (cfs)		Seepage	Ouflow Rate:	0.0050 0.07				L (D) -	0	
Area * C" Factor Coef. of Intensity		m: 10.68	(assumed)	0.07				L(B) = K(B) =	0	Tc (C) =
		n: 0.635						S(B) =	0	Tc(A+B) =
#1	#2	#3	#4	#5	#6	#7		Tc (B) =	0.00	Tc(tot.) =
Time	Time	Intensity	Q dev.	V in	V out	Storage				Intensity =
Inc. (min.)	Inc. (sec.) (#1*60)	(in./hr.)	(cfs) (A*C*#3)	(cu. ft.)	(cu. ft.) (Outf.*#2)	(cu. ft.) (#5-#6)				
5.00	300.00	3.84	0.29	115	1.50	114	-	Tc = L / [K√		(gutter)
 5	300	3.84	0.29	115	1-50	114			f segment (ft)	-41
9 10	300	3.84 2.47	0.29 0.18	113 130	3.00	114 127			f segment (feet/foo cover coefficient (
+0 +5	900	2.47 1.91	0.14	143		139				
15 20	1200	1.59 1.59	0.14 0.12	143 155	4.50 6.00	139 149		-See Table	5-6 of SRSM for "	n values
25	1500	1.38	0.10	165	7.50	158				
				100 175						
30	1800 2100	1.23 1.12	0.09 0.08	175 184	9.00 10.50	166 173				
35 40	2400 2400	1.12 1.03	0.08 0.08	184 192	10.50 12.00	173 180				
45	2700	0.95	0.07	192 199	13.50	186				
	3000	0.95 0.89	0.07 0.07	199 206	13.50 15.00					
50	3300 3300					191				
55		0.84	0.06	213	16.50	196				
60	3600	0.79	0.06	219	18.00	201				
65	3900	0.75	0.06	225	19.50	206				
70	4200	0.72	0.05	231	21.00	210				
75	4500	0.69	0.05	237	22.50	214				
80	4800	0.66	0.05	242	24.00	218				
85	5100	0.64	0.05	247	25.50	221				
90	5400	0.61	0.05	252	27.00	225				
95	5700	0.59	0.04	257	28.50	228				
100	6000	0.57	0.04	261	30.00	231				
600	36000	0.18	0.01	495	180.00	315				
690	41400 41700	0.17 0.17	0.01 0.01	521 523	207.00	314 314				
695 4320	259200	0.17	0.01	523 1016	208.50 1296.00	-280	=			
208 SWALE POI	ND CALCULAT	TONS	0.00	1010						
		uired [cf] = 1133*A				cu. ft.				
		ired [cf] = 1815*A			113					
*Must meet SRS	M soil requiren	ents	1	Provided:	130 (ou. It.				
		50-YEAR DESIGN ST age required by SCS	Method (store er	atire storm) = Provided:	572 (1044 (Excess Storage	471.68		
	Time for diam	! -f F.:!! Ot F.:.		0						
	time for disp	osal of Full Storm Eve Tot	ent @ 0.0196 CF al Volume / Rate		31.79	HRS				
	Time for disp	osal of Surface Water			01.70					
		Volum	ne of Pond / Rate	= Time >>>	-18.98	HRS				

STORHAUG ENGINEERING Basin E

CONTRIBUTING AREAS

0.00 0.17 5.00 3.84

0.10	Acres	4433 s.f.				
Areas (Ac.)	"C"	A*C	Areas (s.f.)	Treat?		
0.06	0.900	0.0558	2700	Υ		
0.00	0.900	0.0000	0	Υ		
0.01	0.900	0.0134	648	N		
0.00	0.900	0.0000	0	N		
0.02	0.220	0.0055	1085	N		
Total A	Comp "C"	Qpeak				
0.10	0.73	0.29				
0.06	0.90	0.21	•			
	Areas (Ac.) 0.06 0.00 0.01 0.00 0.02 Total A 0.10	(Ac.) 0.06 0.900 0.00 0.900 0.01 0.900 0.00 0.900 0.02 0.220 Total A Comp "C" 0.10 0.73	Areas "C" A*C (Ac.) 0.06 0.900 0.0558 0.00 0.900 0.00134 0.00 0.900 0.0000 0.02 0.220 0.0055 Total A Comp "C" Qpeak 0.10 0.73 0.29	Areas "C" A*C Areas (s.f.) (Ac.) 0.06 0.900 0.0558 2700 0.00 0.900 0.0000 0 0.01 0.900 0.0134 648 0.00 0.900 0.0000 0 0.02 0.220 0.0055 1085 Total A Comp "C" Qpeak 0.10 0.73 0.29		

POND VOLUMES	Bottom	Depth	208	Depth	Тор		
	Elevation	to 208	Elevation	to Top	Elevation	208	Storage
Swale	Area	Elevation	Area	Elevation	Area	Volume	Volume
Number	(sf)	(ft)	(sf)	(ft)	(sf)	(cf)	(cf)
E1	47	0.50	113	0.5	113	40	40
E2	63	0.50	184	0.5	184	61.75	61.75
E3	20	0.50	93	0.5	93	28.25	28.25
	Length	Width	Depth	Pipe Dia	Voids		
Gallery	(ft)	(ft)	(ft)	(in)	%		
E	55	15	2.75	6	40%	0	914.0
						130	1044

PEAK RUNOFF VOLUME (50-YR STORM, SCS METHOD)													
	Areas	CN	A*C										
	(Ac.)												
Paved	0.06	98	6.074	P(50) =	2.2 in								
Driveway	0.00	98	0.000	S =	0.68								
Sidewalk	0.01	98	1.458	Total Runoff Depth(Q50) =	1.55 in								
Building	0.00	98	0.000	Total Storm Volume (V) =	572 cf								
Landscape	0.02	80	1.993	*Class D Soils w/ >75% Grass Cover									

*Class D Soils w/ 30%-70% ground cover (Herbaceous)

10.10 93.59

11-131 Cheney Elementary

ORIFICE DISPOSAL RATE

C (Orifice Coefficient)	0.61	
Orifice Diameter	0.65	in
iter Depth Above Orifice	3.00	ft
Orifice Dienegal Bate	0.0106	ofo

sposal Rate 0.0196 cfs See orifice calculations for more information

RATIONAL & SCS METHOD	PROJECT: 25-121 Clark 53rd
DETENTION BASIN DESIGN	BASIN: F
	REVIEWER: AJS
Design Year: 50	DESIGNER: SCE
-	DATE: 10/28/2025

RUNOFF STORA	4 <i>GE</i>							TIME OF CO	ONCENTRATION	(minutes)		
Single (Type A) Exfiltration (cfs)	0.	Orifice Outflow	1 0.0196					Tc (overland	1)	Tc (gutter)		
Time of Conc. (n Area (Acres) Composite "C"		3	0.0196	5.00 1.09 0.61				L(A) = K(A) S(A) =	10 420 0.0194	L(C) = K(C) = S(C) =	0 0 0	
208 Treated Area Volume Provided			208:	0.34 1243	Storm:	7494		Tc (A) =	0.17	Tc (C) =	0.00	
Outflow (cfs) Area * C" Factor		Orifice Allowable	Ouflow Rate:	0.0196 0.66				L(B) =	0			
Coef. of Intensity		n: 10.68 n: 0.635		0.00				K(B) = S(B) =	0	Tc (C) = Tc(A+B) =	0.00 0.17	
							-					
#1 Time	#2 Time	#3 Intensity	#4 Q dev.	#5 V in	#6 V out	#7 Storage		Tc (B) =	0.00	Tc(tot.) = Intensity =	5.00 3.84	
Inc. (min.)	Inc. (sec.) (#1*60)	(in./hr.)	(cfs) (A*C*#3)	(cu. ft.)	(cu. ft.) (Outf.*#2)	(cu. ft.) (#5-#6)						
5.00	300.00	3.84	2.55	1026	5.88	1020		Tc (total) = Tc (overland) + Tc (gutter) Tc = L / $[K \lor (S)]$				
<u>5</u>	300	3.84	2.55	1026	5.88	1020			f segment (ft) segment (feet/for	n#)		
10	600	2.47	1.64	1154	11.76	1142			cover coefficient (
15	900	1.91	1.27	1273	17.65	1255		-See Table 5-6 of SRSM for "K" values				
20	1200	1.59	1.06	1378	23.53	1354						
25	1500	1.38	0.92	1472	29.41	1442						
30	1800	1.23	0.82	1556	35.29	1521						
35	2100	1.12	0.74	1634	41.17	1592						
40	2400	1.03	0.68	1705	47.05	1658						
45	2700	0.95	0.63	1772	52.94	1719						
50	3000	0.89	0.59	1835	58.82	1776						
55	3300	0.84	0.56	1894	64.70	1829						
60	3600	0.79	0.53	1950	70.58	1880						
65	3900	0.75	0.50	2004	76.46	1927						
70	4200	0.72	0.48	2055	82.35	1973						
75	4500	0.69	0.46	2104	88.23	2016						
80	4800	0.66	0.44	2151	94.11	2057						
85	5100	0.64	0.42	2197	99.99	2097						
90	5400	0.61	0.41	2241	105.87	2135						
95	5700	0.59	0.39	2283	111.75	2171						
100	6000	0.57	0.38	2324	117.64	2207						
100	36000	0.57 0.18	0.38 0.12	2324 4408	705.82	3702						
690	41400	0.15 0.17	0.12 0.11	4637	811.69	3825						
695	41700	0.17 0.17	0.11	4649	817.57	3831						
4320	259200	0.05	0.03	9038	5081.87	3956	•					
208 SWALE PO		ONS ired [cf] = 1133*A			204	cu. ft.						
		red [cf] = 1815*A			381 610							
*Must meet SRS				Provided:	1243							
STORAGE REQ	UIREMENTS - 5	0-YEAR DESIGN ST	ORM .									
	Maximum storaç	ge required by SCS I		itire storm) = Provided:	5097 7494		Excess Storage	2397.52				
	Time for dispos	sal of Full Storm Eve			72.21	HPS						
Total Volume / Rate = Time >>> Time for disposal of Surface Water (Volume above Pond) Volume of Pond / Rate = Time >>>					1.25							
		Volum	ona , reac	,,,,,,	20							

STORHAUG ENGINEERING Basin F 11-131 Cheney Elementary

CONTRIBUTING AREAS

Site	1.09	Acres		47364 s	s.f.
	Areas (Ac.)	"C"	A*C	Areas (s.f.)	Treat?
Paved	0.29	0.900	0.2618	12669	Υ
Driveway	0.05	0.900	0.0408	1975	Υ
Sidewalk	0.07	0.900	0.0674	3262	N
Building	0.21	0.900	0.1924	9311	N
Landscape	0.46	0.220	0.1018	20147	N
	Total A	Comp "C"	Qpeak		
Total Site	1.09	0.61	2.55		
Connected Impervious	0.34	0.90	1.16		

POND VOLUMES							
	Bottom	Depth	208	Depth	Тор		
	Elevation	to 208	Elevation	to Top	Elevation	208	Storage
Swale	Area	Elevation	Area	Elevation	Area	Volume	Volume
Number	(sf)	(ft)	(sf)	(ft)	(sf)	(cf)	(cf)
F1	2486	0.50	2486	1.0	2486	1243	2486
	Length	Width	Depth	Pipe Dia	Voids		
Gallery	(ft)	(ft)	(ft)	(in)	%		
F	78	32	5.00	8	40%	0	5008.3
						1243	7494

PEAK RUNOFF VOLUME (50-YR STORM, SCS METHOD)

	Areas	CN	A*C			
PEAK RUNOFF VOLUM	(Ac.)					
Paved	0.29	98	28.502	P(50) =	2.2 in	
Driveway	0.05	98	4.443	S =	1.07	
Sidewalk	0.07	98	7.339	Total Runoff Depth(Q50) =	1.29 in	
Building	0.21	98	20.948	Total Storm Volume (V) =	5097 cf	
Landscape	0.46	80	37.001	*Class D Soils w/ >75% Grass Cover		
				*Class D Soils w/ 30%-70% ground cover	(Herbaceous)	

Total A Comp "C" 1.09 90.34

ORIFICE DISPOSAL RATE

C (Orifice Coefficient)	0.61	
Orifice Diameter	0.65	in
Water Depth Above Orifice	3.00	ft
Orifice Disposal Rate	0.0196	cfs

See orifice calculations for more information

RATIONAL & SCS METHOD	PROJECT: 25-121 Clark 53rd
DETENTION BASIN DESIGN	BASIN: G
	REVIEWER: AJS
Design Year: 50	DESIGNER: SCE
-	DATE: 10/28/2025

						DATE:	10/28/2025				
RUNOFF STORAG	E						-	TIME OF CO	ONCENTRATION (minutes)	
Single (Type A)		0 Orifice Outflow	θ					Tc (overland	1)	Tc (gutter)	
xfiltration (cfs)	(2.3	0.0196					1 (4) -	10	1 (0) -	
								L(A) =		L(C) =	
ime of Conc. (min))			5.00				K(A)	420	K(C) =	
rea (Acres)				0.30				S(A) =	0.0194	S(C) =	
Composite "C"				0.77							
08 Treated Area (a	acres)			0.19				Tc (A) =	0.17	Tc (C) =	0.
olume Provided			208:	273.5	Storm:	983					
outflow (cfs)		Post-Dev	Ouflow Rate:	0.0300	0.03<0.97 there	fore smaller po	ost dev release				
rea * C" Factor		(2-yr F	Pre-Dev =0.97)	0.23				L(B) =	0		
oef, of Intensity		m: 10.68	-					K(B) =	0	Tc (C) =	0.
•		n: 0.635						S(B) =	0	Tc(A+B) =	0.
#1	#2	#3	#4	#5	#6	#7	-	To (R) =	0.00	Tc(tot.) =	5.0
Time	Time	Intensity	Q dev.	#5 V in	V out	#/ Storage		Tc (B) =	0.00	Intensity =	3.
		intensity	Q dev.	v III	v out	Siorage				miensity –	3.0
Inc.	Inc.	(in the \	(ofo)	(ou ft)	(ou ft)	(ou ft)					
(min.)	(sec.)	(in./hr.)	(cfs)	(cu. ft.)	(cu. ft.)	(cu. ft.)					
	(#1*60)		(A*C*#3)		(Outf.*#2)	(#5-#6)		To (total) = T	C (overland) + Tc	(auttor)	
5.00	300.00	3.84	0.88	353	9.00	344		Tc = L / [K\/((guiter)	
									f segment (ft)		
5	300	3.84	0.88	353	9.00	344			segment (feet/foo		
10	600	2.47	0.57	397	18.00	379			cover coefficient (f		
15	900	1.91	0.44	438	27.00	411		-See Table 5	5-6 of SRSM for "k	" values	
20	1200	1.59	0.36	474	36.00	438					
25	1500	1.38	0.32	507	45.00	462					
30	1800	1.23	0.28	536	54.00	482					
35	2100	1.12	0.26	562	63.00	499					
40	2400	1.03	0.23	587	72.00	515					
45	2700	0.95	0.22	610	81.00	529					
50	3000	0.89	0.20	632	90.00	542					
55	3300	0.84	0.19	652	99.00	553					
60	3600	0.79	0.18	671	108.00	563					
65	3900	0.75	0.17	690	117.00	573					
70	4200	0.72	0.16	708	126.00	582					
70 75	4500	0.69	0.16 0.16	700 724	135.00	589					
73 80	4800	0.66	0.15 0.15	741	144.00	597					
85	5100	0.64	0.15 0.15		144.00 153.00						
				756		603					
90	5400	0.61	0.14	771	162.00	609					
95	5700	0.59	0.14	786	171.00	615					
100	6000	0.57	0.13	800	180.00	620					
600	36000	0.18	0.04	1517	1080.00	437					
690	41400	0.17	0.04	1596	1242.00	354					
695	41700	0.17	0.04	1600	1251.00	349	_				
4320	259200	0.05	0.01	3112	7776.00	-4664	-				
08 SWALE POND		1010									
		HUNS uired [cf] = 1133*A			245	cu. ft.					
						cu. it.					
¥ Must meet SRSM د		uired [cf] = 1815*A		Daniel de de							
WUSE TIBBLE SKSM (son requirem	ISHES	•	Provided:	273.5	cu. ft.					
		50-YEAR DESIGN ST		·	200	4					
Ma	axiinum stora	age required by SCS I				cu. ft.	Evenes Str	. 262.02			
				Provided:	983	cu. ft.	Excess Storag	€ 362.92			

983 cu. ft.

Excess Storage 362.92

Pre-Dev Volume = 4166 for 2 yr, 9846 for 25-year, We are releasing less than 2 and 25 yr for peak rate and volume
Time for disposal of Full Storm Event @ 0.0196 CFS
Total Volume / Rate = Time >>>
Time for disposal of Surface Water (Volume above Pond)
Volume of Pond / Rate = Time >>>
12.26 HRS

Provided:

STORHAUG ENGINEERING Basin G 11-131 Cheney Elementary

CONTRIBUTING AREAS

Site

Paved

Driveway

Sidewalk

Landscape

Total Site

Connected Impervious

POND VOLUMES

Swale

Number

G1

Building

0.30 Acres Areas

(Ac.)

0.02

0.02

0.03

0.06

Total A

0.30

0.19

Bottom

Elevation

Area

(sf)

547

Lenath

PEAK RUNOFF VOLUME (50-YR STORM, SCS METHOD) Areas (Ac.)

0.17

0.02

0.02

0.03

0.06

Total A

0.30

C (Orifice Coefficient)

Orifice Disposal Rate

Orifice Diameter Water Depth Above Orifice

Paved

Driveway

Sidewalk

Building

Landscape

ORIFICE DISPOSAL RATE

"C"

0.900

0.900

0.900

0.900

0.220

Comp "C"

0.77

0.90

Depth

to 208

Elevation

0.50

Width

98

98

98

80

Comp "C"

94.45

0.61

3.00 ft

0.0196 cfs

A*C

0.1539

0.0172

0.0196

0.0249

0.0130 Qpeak 0.88

208

Elevation

Area

(sf) 547

Depth

16.763

1.872

2 137

2 711

4 714

13005 s.f.

Areas (s.f.) Treat?

N

Ν

Top Elevation

Area

(sf) 547

Voids

Total Runoff Depth(Q50) =

Total Storm Volume (V) =

*Class D Soils w/ 30%-70% ground cover (Herbaceous)

*Class D Soils w/ >75% Grass Cover

See orifice calculations for more information

208

Volume

273.5

273.5

P(50) =

Storage

Volume

436.1

2.2 in

1.62 in

1760 cf

0.59

983

Depth

to Top

Elevation

(ft)

1.0

Pipe Dia

(in)

RATIONAL & SCS METHOD	PROJECT: 25-121 Clark 53rd
DETENTION BASIN DESIGN	BASIN: H
	REVIEWER: AJS
Design Year: 50	DESIGNER: SCE
	DATE: 10/28/2025

GE .										
							TIME OF CO	NCENTRATION (minutes)	
0.3	Orifice Outflow	0.0196					Tc (overland)	Tc (gutter)	
1)			5.00 0.26 0.52				L(A) = K(A) S(A) =	10 420 0.0194	L(C) = K(C) = S(C) =	
(acres)	Orifice Allowable	208:	0.08 175.5	Storm:	853		Tc (A) =	0.17	Tc (C) =	0
	ooo abio	ounou riato.	0.14				L(B) =	0		
							K(B) = S(B) =	0	Tc (C) = Tc(A+B) =	0
#2	#3	#4	#5	#6	#7	-	Tc (B) =	0.00	Tc(tot.) =	5
Time Inc.	Intensity	Q dev.	V in	V out	Storage				Intensity =	3
(sec.) (#1*60)	(in./hr.)	(cfs) (A*C*#3)	(cu. ft.)	(cu. ft.) (Outf.*#2)	(cu. ft.) (#5-#6)					
300.00	3.84	0.52	210	5.88	204		Tc (total) = Tc (overland) + Tc (gutter) Tc = L / [$K\sqrt(S)$]			
300	3.84	0.52	210	5.88	204	-			t)	
600	2.47	0.34	236	11.76	224					
900	1.91	0.26	260	17.65	242					
1200	1.59	0.22	282	23.53	258					
1500	1.38	0.19	301	29.41	271					
1800	1.23	0.17	318	35.29	283					
2700	0.95	0.13	362	52.94	309					
3000	0.89	0.12	375	58.82	316					
3300	0.84	0.11	387	64.70	322					
3600	0.79	0.11	399	70.58	328					
3900	0.75	0.10	409	76.46	333					
4200	0.72	0.10	420	82.35	338					
4500	0.69	0.09	430	88.23	342					
4800	0.66	0.09	440	94.11	346					
5100	0.64	0.09	449	99.99	349					
5400	0.61	0.08	458	105.87	352					
5700	0.59	0.08	467	111.75	355					
6000	0.57	0.08	475	117.64	357					
36000	0.18	0.02	901	705.82	195					
41400	0.17	0.02	947	811.69	136					
41700 259200	0.17	0.02	950 1847	817.57 5081.87	-3235	-				
O CALCULATIO	NS	U.U.I	1047-							
soil requiremen	NS	+	'rovided:	175.5	ou. It.					
					_					
aximum storage	e required by SCS					Excess Storag	j∈ -212.71			
Time for dispose				15.10	HRS					
Time for disposa	al of Surface Water	(Volume above	Pond)							
	#2 Time Inc. (sec.) (#1*60) 300.00 300.00 300.00 400 4500 4500 4500 4500 4500 4500	m: 10.68 n: 0.635 #2 #3 Time Intensity Inc. (sec.) (in./hr.) (#1160) 300.00 3.84 300 3.84 300 2.47 900 1.91 1200 1.59 1500 1.38 1800 1.23 2100 1.12 2400 1.03 2700 9.96 3900 9.89 3900 0.84 3600 0.75 4200 0.66 5100 0.68 5100 0.68 5100 0.68 5100 0.64 5400 0.61 5700 0.59 6800 0.57 38000 0.18 41400 0.17 41700 0.17 259200 0.05 Volume Required [cf] = 1133*A / Jolume Required [cf] = 1815*A soil requirements	Orifice Allowable Outflow Rate: m: 10.68 n: 0.635 #2 #3 #4 Time Intensity Q dev. Inc. (sec.) (in./hr.) (cfs) (#1*60) (A*C*#3) 300.00 3.84 0.52 300 2.47 0.34 999 1.91 0.22 1500 1.38 0.19 1200 1.58 0.22 1500 1.38 0.19 1200 1.59 0.22 1500 0.45 0.17 2100 1.12 0.15 2400 1.03 0.14 2700 0.96 0.13 3909 0.84 0.11 3600 0.75 0.10 2700 0.96 0.13 3909 0.89 0.12 3300 0.84 0.11 3600 0.76 0.10 2700 0.96 0.99 4800 0.69 0.79 4800 0.69 0.99 4800 0.69 0.99 4800 0.69 0.99 4800 0.69 0.99 4800 0.69 0.99 4800 0.69 0.99 4800 0.69 0.99 4800 0.69 0.99 4800 0.69 0.99 4800 0.69 0.99 4800 0.69 0.99 4800 0.69 0.99 4800 0.69 0.99 4800 0.69 0.99 4800 0.69 0.99 4800 0.69 0.99 4800 0.61 0.09 5100 0.64 0.09 5100 0.64 0.09 5100 0.64 0.09 5100 0.64 0.09 5100 0.65 0.98 36000 0.18 0.02 41400 0.17 0.02 414700 0.17 0.02 41700 0.17 0.02	Solution Solution	acres)	acres) Solution Columbia C	South	L(A) = 1	L(A) = 10	Solution Solution

STORHAUG ENGINEERING Basin H 11-131 Cheney Elementary

CONTRIBUTING AREAS							
Site	0.26	Acres		11387	s.f.		
	Areas (Ac.)	"C"	A*C	Areas (s.f.)	Treat?		
Paved Driveway Sidewalk Building Landscape	0.05 0.02 0.01 0.02 0.15	0.900 0.900 0.900 0.900 0.220	0.0471 0.0225 0.0115 0.0224 0.0322	2280 1088 559 1082 6378	Y Y N N		
Total Site Connected Impervious	Total A 0.26 0.08	Comp "C" 0.52 0.90	Qpeak 0.52 0.27]			
POND VOLUMES					_		
	Bottom Elevation	Depth to 208	208 Elevation	Depth to Top	Top Elevation	208	Storage
Swale Number	Area (sf)	Elevation (ft)	Area (sf)	Elevation (ft)	Area (sf)	Volume (cf)	Volume (cf)
H1	295	0.50	407	1.0	538	175.5	416.5
Gallery	Length (ft)	Width (ft)	Depth (ft)	Pipe Dia (in)	Voids %	<u>-</u>	
Н	22.5	24.0	2	8	40%	0 175.5	436.7 853
PEAK RUNOFF VOLUM	F (50-YR ST	ORM. SCS M	ETHOD)				
	•		•				
PEAK RUNOFF VOLUM	Areas (Ac.)	CN	A*C				
Paved Driveway Sidewalk Building Landscape	0.05 0.02 0.01 0.02 0.15	98 98 98 98 98	5.129 2.448 1.258 2.434 11.713	*Class D Soil		olume (V) =	2.2 in 1.37 1.12 in 1066 cf
	Total A 0.26	Comp "C" 87.92		Class D Soll	s w/ 30%-70	∞ grouna co\	ver (Herbaceous)

ORIFICE DISPOSAL RATE		
C (Orifice Coefficient) Orifice Diameter	0.61 0.65 in	

Water Depth Above Orifice 3.00 ft
Orifice Disposal Rate 0.0196 cfs See orifice calculations for more information

RATIONAL & SCS METHOD	PROJECT: 25-121 Clark 53rd
DETENTION BASIN DESIGN	BASIN: I
	REVIEWER: AJS
Design Year: 50	DESIGNER: SCE
	DATE: 10/28/2025

RUNOFF STORA	NOE.							TIME OF C	ONCENTRATION	(minutos)
RUNOFF STORF	IGE							TIME OF C	UNCENTRATION	(minutes)
Single (Type A) Exfiltration (cfs)		Orifice Outflow	0.0196					Tc (overland	·	Tc (gutter)
Time of Conc. (m Area (Acres) Composite "C"	iin)			5.00 0.30 0.70				L(A) = K(A) S(A) =	10 420 0.0194	L(C) = K(C) = S(C) =
208 Treated Area Volume Provided			208:	0.15 395.5	Storm:	1812		Tc (A) =	0.17	Tc (C) =
Outflow (cfs)		Orifice Allowable	Ouflow Rate:	0.0196						
Area * C" Factor Coef. of Intensity		m: 10.68		0.21				L(B) = K(B) =	0	Tc (C) =
Coef. of Internsity		n: 0.635						S(B) =	0	Tc(A+B) =
#1	#2	#3	#4	#5	#6	#7	_	Tc (B) =	0.00	Tc(tot.) =
Time	Time	Intensity	Q dev.	V in	V out	Storage				Intensity =
Inc. (min.)	Inc. (sec.) (#1*60)	(in./hr.)	(cfs) (A*C*#3)	(cu. ft.)	(cu. ft.) (Outf.*#2)	(cu. ft.) (#5-#6)				
5.00	300.00	3.84	0.82	331	5.88	325	-	Tc = L / [Kv		c (gutter)
<u>5</u>	300	3.84	0.82	331	5.88	325			f segment (ft) f segment (feet/fo	not)
10	600	2.47	0.53	372	11.76	360			cover coefficient	
15	900	1.91	0.41	410	17.65	393			5-6 of SRSM for	
20	1200	1.59	0.34	444	23.53	421				
25	1500	1.38	0.30	474	29.41	445				
30	1800	1.23	0.26	502	35.29	466				
35	2100	1.12	0.24	527	41.17	486				
40	2400	1.03	0.22	550	47.05	503				
45	2700	0.95	0.20	571	52.94	518				
50	3000	0.89	0.19	592	58.82	533				
55	3300	0.84	0.18	611	64.70	546				
60	3600	0.79	0.17	629	70.58	558				
65	3900	0.75	0.16	646	76.46	570				
70	4200	0.72	0.15	663	82.35	580				
75	4500	0.69	0.15	678	88.23	590				
80	4800	0.66	0.14	694	94.11	600				
85	5100	0.64	0.14	708	99.99	608				
90	5400	0.61	0.13	722	105.87	617				
95	5700	0.59	0.13	736	111.75	624				
100	6000	0.57	0.12	749	117.64	632				
600	36000	0.18	0.04	1421	705.82	715				
690	41400	0.17	0.04	1495	811.69	683				
695 4320	41700 259200	0.17 0.05	0.04	1499 2914	817.57 5081.87	681 -2168	=			
208 SWALE POP										
		uired [cf] = 1133*A			165 (cu. ft.				
	Volume Requ	uired [cf] = 1815*A			265	ou. ft.				
*Must meet SRSI	M soil requiren	ments	ŧ	Provided:	395.5 (ou. ft.				
STORAGE REOL	JIREMENTS -	50-YEAR DESIGN ST	ORM							
		age required by SCS N		tire storm) =	1638	cu. ft.				
		, ,		Provided:	1812		Excess Storage	173.74		
	Time for disn	osal of Full Storm Eve	nt @ 0.0196 CF	S						
			al Volume / Rate		23.20	HRS				
	Time for disp	osal of Surface Water								
			e of Pond / Rate		8.75	HRS				

STORHAUG ENGINEERING Basin I

CONTRIBUTING AREAS Site 0.30 Acres 13247 s.f. Areas "C" A*C Areas (s.f.) Treat? (Ac.) Paved 0.900 0.0966 4676 1676 Driveway Sidewalk Building 0.0346 0.0190 0.04 0.900 0.02 0.900 919 2160 N 0.05 0.900 0.0446 Ν Landscape 0.09 0.220 0.0193 3816 Qpeak 0.82 Total A Comp "C" Total Site 0.30 0.70 Connected Impervious 0.15 0.90 POND VOLUMES Depth to 208 208 Elevation Depth to Top Top Elevation Bottom Elevation 208 Storage Swale Area Elevation Area Elevation Area Volume Volume (sf) 791 Voids Number (sf) (ft) 0.50 (sf) 791 791 Length 1.0 Width Depth Pipe Dia (in) 1020.5 1812 395.5 PEAK RUNOFF VOLUME (50-YR STORM, SCS METHOD) Areas CN PEAK RUNOFF VOLUM (Ac.) 0.11 2.2 in 0.77 1.48 in 1638 cf Paved Driveway 10.520 3.771 0.04 98 98 2.068 Total Runoff Depth(Q50) = Sidewalk 0.02 Building Total Storm Volume (V) = 0.05 98 4.860 Landscape 0.09 80 7.008 *Class D Soils w/ >75% Grass Cover

*Class D Soils w/ 30%-70% ground cover (Herbaceous)

11-131 Cheney Elementary

0.00

0.00 0.17

5.00

3.84

ORIFICE DISPOSAL RATE		
C (Orifice Coefficient)	0.61	
Orifice Diameter	0.65 in	
Water Depth Above Orifice	3.00 ft	
Orifice Dienocal Rate	0.0196 cfe	See orifice calculations for more information

Total A

0.30

Comp "C"

92.81

RATIONAL & SCS METHOD	PROJECT: 25-121 Clark 53rd	
DETENTION BASIN DESIGN	BASIN: J	
	REVIEWER: AJS	
Design Year: 50	DESIGNER: SCE	
	DATE: 10/28/2025	

										•
RUNOFF STORAG	BE .							TIME OF C	ONCENTRATION	(minutes)
Single (Type A) Exfiltration (cfs)	0.3	Orifice Outflow	0.0196					Tc (overland	d)	Tc (gutter)
Time of Conc. (min Area (Acres) Composite "C"	1)			5.00 0.08 0.51				L(A) = K(A) S(A) =	10 420 0.0194	L(C) = K(C) = S(C) =
208 Treated Area (Volume Provided	acres)		208:	0.03 224.5	Storm:	392		Tc (A) =	0.17	Tc (C) =
Outflow (cfs)		Orifice Allowable	Ouflow Rate:	0.0196 0.04				L(B) =	0	
Area * C" Factor Coef. of Intensity		10.68 0.635		0.04			1	K(B) = S(B) =	0	Tc (C) = Tc(A+B) =
#1	#2	#3	#4	#5	#6	#7		Tc (B) =	0.00	Tc(tot.) =
Time Inc.	Time Inc.	Intensity	Q dev.	V in	V out	Storage		. ,		Intensity =
(min.)	(sec.) (#1*60)	(in./hr.)	(cfs) (A*C*#3)	(cu. ft.)	(cu. ft.) (Outf.*#2)	(cu. ft.) (#5-#6)				
5.00	300.00	3.84	0.15	61	5.88	55	-	Tc = L / [K√		(gutter)
									f segment (ft)	
5 10	300 600	3.84 2.47	0.15 0.10	61 68	5.88 11.76	55 57			f segment (feet/foo cover coefficient (
10 15	900	1.91	0.08	75	17.65	58			5-6 of SRSM for "	
20	1200	1.59	0.06	82	23.53	58		-See Table	3-0 UI SKSIVI IUI	n values
25	1500	1.38	0.05	87	29.41	58				
30	1800	1.23	0.05	92	35.29	57				
35	2100	1.12	0.03	97	41.17	56				
40	2400	1.03	0.04	101	47.05	54				
4 5	2700	0.95	0.04	105	52.94	52				
50	3000	0.89	0.04	100	58.82	50				
55	3300	0.84	0.04	112	64-70	47				
60	3600	0.79	0.03	115	70.58	45				
65	3900	0.75	0.03	119	76.46	4 2				
70	4200	0.72	0.03	122	82.35	39				
75	4500	0.69	0.03	125	88.23	36				
80	4800	0.66	0.03	127	94.11	33				
85	5100	0.64	0.03	130	99.99	30				
90	5400	0.61	0.02	133	105.87	27				
95	5700	0.59	0.02	135	111.75	23				
100	6000	0.57	0.02	138	117.64	20				
600	36000	0.18	0.02	261	705.82	-445				
690	41400	0.17	0.01	275	811.69	-537				
695	41700	0.17	0.01	275	817.57	-542				
4320	259200	0.05	0.00	535	5081.87	-4547	=			
208 SWALE PONE										
		ed [cf] = 1133*A				su. ft.				
	/olume Require					ou. ft.				
Must meet SRSM	soil requiremen	its.	1	Provided:	224.5 (o u. ft.				
STORAGE REQUI	REMENTS - 50	-YEAR DESIGN ST	ORM							
		e required by SCS N	Method (store en	tire storm) = Provided:	310 (392 (Excess Storage	82.39		
ı	Fime for disposa	al of Full Storm Eve	nt @ 0.0196 CF	S						
			al Volume / Rate	= Time >>>	4.39	HRS				
	101 410000		e of Pond / Rate		2.01	HRS				

STORHAUG ENGINEERING Basin J

CONTRIBUTING AREAS Site 0.08 Acres 3341 s.f. Areas "C" A*C Areas (s.f.) Treat? (Ac.) 0.03 0.00 0.00 0.00 0.04 Paved Driveway Sidewalk Building Landscape 0.900 0.900 0.900 0.900 0.220 0.0297 0.0000 0.0000 0.0000 N 0 1903 0.0096 Total A 0.08 0.03 Comp "C" 0.51 0.90 Qpeak 0.15 0.11 Total Site Connected Impervious POND VOLUMES

0.00

0.00 0.17

5.00 3.84

OND FOLOMEO							
	Bottom	Depth	208	Depth	Top		
	Elevation	to 208	Elevation	to Top	Elevation	208	Storage
Swale	Area	Elevation	Area	Elevation	Area	Volume	Volume
Number	(sf)	(ft)	(sf)	(ft)	(sf)	(cf)	(cf)
J1	295	0.50	603	0.5	603	224.5	224.5
	Length	Width	Depth	Pipe Dia	Voids		
Gallery	(ft)	(ft)	(ft)	(in)	%		
J	97	1.57	2	12	40%	0	167.5
						224.5	392

	Areas	CN	A*C		
EAK RUNOFF VOLUM	(Ac.)				
Paved	0.03	98	3.235	P(50) =	2.2 in
Driveway	0.00	98	0.000	S =	1.40
Sidewalk	0.00	98	0.000	Total Runoff Depth(Q50) =	1.11 in
Building	0.00	98	0.000	Total Storm Volume (V) =	310 cf
Landscape	0.04	80	3.495	*Class D Soils w/ >75% Grass Cover	
				*Class D Soils w/ 30%-70% ground cover	(Herbaceous)
	Total A	Comp "C"		· ·	` ,

ORIFICE DISPOSAL RATE		
C (Orifice Coefficient) Orifice Diameter Water Depth Above Orifice	0.61 0.65 in 3.00 ft	
Orifice Disposal Rate	0.0196 cfs	See orifice calculations for more information

11-131 Cheney Elementary

0.08

87.75

RATIONAL & SCS METHOD	PROJECT: 25-121 Clark 53rd
DETENTION BASIN DESIGN	BASIN: E
	REVIEWER: AJS
Design Year: 50	DESIGNER: SCE
	DATE: 10/23/2025

RUNOFF STORAG	E					
-Single (Type A) Exfiltration (cfs)	0.3	Orifice Outflow	0 0.0196			
Time of Conc. (min) Area (Acres) Composite "C" 208 Treated Area (a Volume Provided Outflow (cfs) Area * C" Factor Coef. of Intensity	ncres) m:	Seepage 10.68 0.635	208: Ouflow Rate: (assumed)	5.00 0.10 0.73 0.06 667.75 0.0050 0.07	Storm:	668
#1	#2	#3	#4	#5	#6	#7
Time	Time	Intensity	Q dev.	V in	V out	Storage
Inc. (min.)	Inc. (sec.) (#1*60)	(in./hr.)	(cfs) (A*C*#3)	(cu. ft.)	(cu. ft.) (Outf.*#2)	(cu. ft.) (#5-#6)
5.00	300.00	3.84	0.29	115	1.50	114
5	300	3.84	0.29	115	1.50	114
10	600	2.47	0.18	130	3.00	127
15	900	1.91	0.14	143	4.50	139
20	1200	1.59	0.12	155	6.00	149
25	1500	1.38	0.10	165	7.50	158
30	1800	1.23	0.09	175	9.00	166
35	2100	1.12	0.08	184	10.50	173
40	2400	1.03	0.08	192	12.00	180
45 50	2700 3000	0.95 0.89	0.07 0.07	199 206	13.50 15.00	186 191
55	3300	0.84	0.06	200 213	15.00 16.50	196
50	3600	0.79	0.06	213 219	18.00	201
65	3900	0.75	0.06	225	10.00 19.50	206
70	3900 4200	0.72	0.05	231	19.50 21.00	210 210
75	4500	0.69	0.05	237	22.50	214
80	4800	0.66	0.05	242	24.00	218
85	5100	0.64	0.05	247	25.50	221
90	5400	0.61	0.05	252	27.00	225
95	5700	0.59	0.04	257	28.50	228
100	6000	0.57	0.04	261	30.00	231
600	36000	0.18	0.01	495	180.00	315
690	41400	0.17	0.01	521	207.00	314
695	41700	0.17	0.01	523	208.50	314
4320	259200	0.05	0.00	1016	1296.00	-280

TIME OF CONCENTRATION (minutes)							
Tc (overland	1)	Tc (gutter)					
L(A) = K(A) S(A) =	10 420 0.0194	L(C) = K(C) = S(C) =	0 0 0				
Tc (A) =	0.17	Tc (C) =	0.00				
L(B) = K(B) = S(B) =	0 0 0	Tc (C) = Tc(A+B) =	0.00 0.17				
Tc (B) =	0.00	Tc(tot.) = Intensity =	5.00 3.84				

To (total) = To (overland) + To (qutter) Tc = L / [K\(S)] L = length of segment (ft) S = slope of segment (feet/foot) K = ground cover coefficient (ft/min) -See Table 5-6 of SRSM for "K" values

208 SWALE POND CALCULATIONS
"Volume Required [cf] = 1133"A
Volume Required [cf] = 1815"A
"Must meet SRSM soil requirements 70 cu. ft. 113 cu. ft. 667.75 cu. ft.

STORAGE REQUIREMENTS - 50-YEAR DESIGN STORM

Maximum storage required by SCS Method (store entire storm) = 572 cu. ft. Provided: 668 cu. ft.

Time for disposal of Full Storm Event @ 0.0196 CFS
Total Volume / Rate = Time >>>
Time for disposal of Surface Water (Volume above Pond)
Volume of Pond / Rate = Time >>> 31.79 HRS 31.79 HRS Excess Storage 95.45

STORHAUG ENGINEERING Basin K

CONTRIBUTING AREAS	3						
Site	0.10	Acres		4433 s.f.			
	Areas (Ac.)	"C"	A*C	Areas (s.f.)	Treat?		
Paved	0.06	0.900	0.0558	2700	Y		
Driveway	0.00	0.900	0.0000	0	Y		
Sidewalk	0.01	0.900	0.0134	648	N		
Building	0.00	0.900	0.0000	0	N		
Landscape	0.02	0.220	0.0055	1085	N		
	Total A	Comp "C"	Qpeak				
Total Site	0.10	0.73	0.29				
Connected Impervious	0.06	0.90	0.21	-			
POND VOLUMES	_						
	Bottom	Depth	208	Depth	Top		

 Year
 N
 P

 2
 3.47
 0.556
 1.2

 10
 6.98
 0.609
 1.8

 25
 9.09
 0.626
 2

 50
 10.7
 0.635
 2.2

 100
 12.3
 0.643
 2.4

POND VOLUMES							
	Bottom	Depth	208	Depth	Top		
	Elevation	to 208	Elevation	to Top	Elevation	208	Storage
Swale	Area	Elevation	Area	Elevation	Area	Volume	Volume
Number	(sf)	(ft)	(sf)	(ft)	(sf)	(cf)	(cf)
K1	248	0.50	548	0.5	548	199	199
K2	254	0.50	559	0.5	559	203.25	203.25
K3	253	0.50	558	0.5	558	202.75	202.75
K4	74	0.50	177	0.5	177	62.75	62.75
	Length	Width	Depth	Pipe Dia	Voids		
Gallery	(ft)	(ft)	(ft)	(in)	%		
K	0	0	2.75	6	40%	0	0.0
						667.75	668

PEAK RUNOFF VOLUME (2-YR STORM, SCS METHOD)

	Areas (Ac.)	CN	A*C		
Paved	0.06	98	6.074	P(50) =	2.2 in
Driveway	0.00	98	0.000	S =	0.68
Sidewalk	0.01	98	1.458	Total Runoff Depth(Q50) =	1.55 in
Building	0.00	98	0.000	Total Storm Volume (V) =	572 cf
Landscape	0.02	80	1.993	*Class D Soils w/ >75% Grass Cover	
				*Class D Soils w/ 30%-70% ground cov	er (Herbaceous)
	Total A	Comp "C"			
	0.10	93.59			

ORIFICE DISPOSAL RATE

C (Orifice Coefficient)	0.61	
Orifice Diameter	0.65 in	
Water Depth Above Orifice	3.00 ft	
Orifice Disposal Rate	0.0196 cfs	See orifice calculations for more information

11-131 Cheney Elementary

RATIONAL & SCS METHOD	PROJECT: 25-121 Clark 53rd
DETENTION BASIN DESIGN	BASIN: L
	REVIEWER: AJS
Design Year: 50	DESIGNER: SCE
-	DATE: 10/28/2025

								TIME OF C	ONCENTRATION (minutes	
Single (Type A) exfiltration (cfs)	0.3	Orifice Outflow	0.0000					Tc (overland	d)	Tc (gutte	
ime of Conc. (min) area (Acres) Composite "C"				5.00 0.34 0.44				L(A) = K(A) S(A) =	10 420 0.0194	L(C) = K(C) = S(C) =	
08 Treated Area (ac olume Provided	res)		208:	0.00	Storm:	C)	Tc (A) =	0.17	Tc (C) =	
outflow (cfs)		Seepage	Ouflow Rate:	0.0050							
rea * C" Factor		40.00	(assumed)	0.15				L(B) =	0	T- (0) -	
oef. of Intensity		10.68 0.635						K(B) = S(B) =	0	Tc (C) = Tc(A+B)	
#1	#2	#3	#4	#5	#6	#7	-	Tc (B) =	0.00	Tc(tot.) =	
Time	Time	Intensity	Q dev.	V in	V out	Storage				Intensity	
Inc. (min.)	Inc. (sec.)	(in./hr.)	(cfs)	(cu. ft.)	(cu. ft.)	(cu. ft.)					
	(#1*60)		(A*C*#3)		(Outf.*#2)	(#5-#6)		Tc (total) =	Tc (overland) + Tc	(autter)	
5.00	300.00	3.84	0.58	232	1.50	230	-	Tc = L / [K		(3)	
5	300	3.84	0.58	232	1.50	230		S = slope of	f segment (feet/foo		
10	600	2.47	0.37	261	3.00	258			K = ground cover coefficient (ft/min) -See Table 5-6 of SRSM for "K" values		
15	900	1.91	0.29	288	4.50	283		-See Table			
20	1200	1.59	0.24	312	6.00	306					
25	1500	1.38	0.21	333	7.50	325					
30	1800	1.23	0.18	352	9.00 10.50	343					
35 40	2100 2400	1.12 1.03	0.17 0.15	369 386	12.00	359 374					
45	2700	0.95	0.14	401	13.50	387					
50	3000	0.89	0.13	415	15.00	400					
55	3300	0.84	0.13	428	16.50	412					
60	3600	0.79	0.12	441	18.00	423					
65	3900	0.75	0.11	453	19.50	434					
70	4200	0.72	0.11	465	21.00	444					
75	4500	0.69	0.10	476	22.50	453					
80	4800	0.66	0.10	486	24.00	462					
85	5100	0.64	0.10	497	25.50	471					
90	5400	0.61	0.09	507	27.00	480					
95	5700	0.59	0.09	516	28.50	488					
100	6000	0.57	0.09	525	30.00	495					
600	36000	0.18	0.03	996	180.00	816					
690	41400	0.17	0.03	1048	207.00	841					
695	41700	0.17	0.03	1051	208.50	843	=				
4320	259200	0.05	0.01	2043	1296.00	747					
08 SWALE POND C *Vo		/S d [cf] = 1133*A			0 (su. ft.					
		l [cf] = 1815*A				u. ft.					
Must meet SRSM so	il requirement	is	ŧ	Provided:	0 0	u. ft.					
TORAGE REQUIRE Maxi		YEAR DESIGN ST required by SCS M	Method (store en	tire storm) =	1232 (cu. ft. cu. ft.	Excess Storage	: -1232.41			
Tim	ne for disposal	of Full Storm Eve		S							
		Tota	al Volume / Rate	= Time >>>	68.47 I	IRS					

STORHAUG ENGINEERING Basin L

ITRIBUTING AREAS	6						
Site	0.34	Acres		14978	s.f.		
	Areas (Ac.)	"C"	A*C	Areas (s.f.)	Treat?		
Paved Driveway Sidewalk Building Landscape	0.00 0.00 0.00 0.11 0.23	0.900 0.900 0.900 0.900 0.220	0.0000 0.0000 0.0000 0.0986 0.0515	0 0 0 4772 10206	Y Y N N		
Total Site nnected Impervious	Total A 0.34 0.00	Comp "C" 0.44 #DIV/0!	Qpeak 0.58 #DIV/0!]			
ID VOLUMES	Bottom	Depth	208	Depth	Top		
Swale Number	Elevation Area (sf)	to 208 Elevation (ft)	Elevation Area (sf)	to Top Elevation (ft)	Elevation Area (sf)	208 Volume (cf)	Storage Volume (cf)
No Swale						0	0
Gallery	Length (ft)	Width (ft)	Depth (ft)	Pipe Dia (in)	Voids %		
						0	0
K RUNOFF VOLUM K RUNOFF VOLUM							
	Areas (Ac.)	CN	A*Ć				
Paved Driveway Sidewalk	0.00 0.00 0.00	98 98 98	0.000 0.000 0.000		tal Runoff D		2.2 in 1.66 0.99 in
Building Landscape	0.11 0.23	98 80	10.736 18.744	*Class D Soil	s w/ >75% G		1232 cf
	Total A	Comp "C"		*Class D Soil	s w/ 30%-70	% ground co	ver (Herbaceous)

11-131 Cheney Elementary

Total A Comp "C" 0.34 85.73

0.00 0.17 5.00 3.84

RATIONAL & SCS METHOD	PROJECT: 25-121 Clark 53rd
DETENTION BASIN DESIGN	BASIN: M
	REVIEWER: AJS
Design Year: 50	DESIGNER: SCE
	DATE: 10/28/2025

RUNOFF STORA	IGE							TIME OF C	ONCENTRATION	(minutes)	Π
Single (Type A) Exfiltration (cfs)	0.	Orifice Outflow	0.0000					Tc (overland		Tc (gutter)	
Time of Conc. (m Area (Acres) Composite "C"	in)			5.00 0.06 0.50				L(A) = K(A) S(A) =	10 420 0.0194	L(C) = K(C) = S(C) =	
208 Treated Area Volume Provided Outflow (cfs)		Saanama	208: Ouflow Rate:	0.00 0 0.0050	Storm:	(0	Tc (A) =	0.17	Tc (C) =	
Area * C" Factor		Seepage	(assumed)	0.03				L(B) =	0		
Coef. of Intensity		n: 10.68	(assumeu)	0.03				K(B) =	0	Tc (C) =	
Coer. or intensity		1: 0.635						S(B) =	0	Tc(A+B) =	
#1	#2	#3	#4	#5	#6	#7	_	Tc (B) =	0.00	Tc(tot.) =	
Time	Time	Intensity	Q dev.	V in	V out	Storage				Intensity =	
Inc.	Inc.										
(min.)	(sec.) (#1*60)	(in./hr.)	(cfs) (A*C*#3)	(cu. ft.)	(cu. ft.) (Outf.*#2)	(cu. ft.) (#5-#6)		To (total) =	Tc (overland) + To	(auttor)	
5.00	300.00	3.84	0.12	46	1.50	45		Tc = L / [K√		(guiler)	
5	300	3.84	0.12	46	1.50	45			segment (feet/for	ot)	
10	600	2.47	0.07	52	3.00	49			cover coefficient (
15	900	1.91	0.06	58	4.50	53			5-6 of SRSM for "		
20	1200	1.59	0.05	62	6.00	56		COO TUDIO	0 0 01 01 011 101	· valuoo	
25	1500	1.38	0.04	67	7.50	59					
30	1800	1.23	0.04	70	9.00	61					
35	2100	1.12 1.12	0.03	74	10.50	63					
40	2400	1.03	0.03	77	12.00	65					
45	2700	0.95	0.03	80	13.50	67					
50	3000	0.89	0.03	83	15.00	68					
55	3300	0.84	0.03	86	16.50	69					
60	3600	0.79	0.02	88	18.00	70					
65	3900	0.75	0.02	91	19.50	71					
70	4 200	0.72	0.02	93	21.00	72					
75	4500	0.69	0.02	95	22.50	73					
80	4800	0.66	0.02	97	24.00	73					
85	5100	0.64	0.02	99	25.50	74					
90	5400	0.61	0.02	101	27.00	74					
95	5700	0.59	0.02	103	28.50	75					
100	6000	0.57	0.02	105	30.00	75					
600	36000	0.18	0.02	199	180.00	19					
690	41400	0.17	0.01	210	207.00	3					
695	41700	0.17	0.01	210	208.50	2					
4320	259200	0.05	0.00	408	1296.00	-887	=				
208 SWALE POA					_						
		ired [cf] = 1133*A				ou. ft.					
************		red [cf] = 1815*A		San data da		ou. ft.					
*Must meet SRSI	vi soli requireme	ents	+	Provided:	0 (eu. ft.					
		0-YEAR DESIGN ST		4i4\	007	4					
,	waximum storaç	ge required by SCS I		tire storm) = Provided:	237	cu. ft. cu. ft.	Excess Storage	-237.49			
	Time for dispo	sal of Full Storm Eve	ent @ 0 0196 CF	S							
	Time for dispos		al Volume / Rate		13.19	JD6					
	Time for dispo	sal of Surface Water			13.19						
	ic for dispo		e of Pond / Rate		13.19	HRS					

STORHAUG ENGINEERING Basin M

Site	0.06	Acres		2602	s.f.		
	Areas (Ac.)	"C"	A*C	Areas (s.f.)	Treat?		
Paved	0.00	0.900	0.0000	0	Υ		
Driveway	0.00	0.900	0.0000	0	Υ		
Sidewalk	0.00	0.900	0.0000	0	N		
Building	0.02	0.900	0.0224	1082	N		
Landscape	0.03	0.220	0.0077	1520	N		
	Total A	Comp "C"	Oneek	1			
Total Site	0.06	0.50	Qpeak 0.12				
onnected Impervious	0.00	#DIV/0!	#DIV/0!	ı			
'							
OND VOLUMES							
	Bottom	Depth	208	Depth	Top		
	Elevation	to 208	Elevation	to Top	Elevation	208	Storage
Swale	Area	Elevation	Area	Elevation	Area	Volume	Volume
Number	(sf)	(ft)	(sf)	(ft)	(sf)	(cf)	(cf)
No Swale						0	0
	Length	Width	Depth	Pipe Dia	Voids		
Gallery	(ft)	(ft)	(ft)	(in)	%		
						0	0

0.00 0.17 5.00 3.84

EAK RUNOFF VOLUME	(2-YR ST	ORM, SCS ME	THOD)		
EAK RUNOFF VOLUME	(50-YR S	TORM, SCS M	IETHOD)		
	Areas	CN	A*C		
	(Ac.)				
Paved	0.00	98	0.000	P(50) =	2.2 in
Driveway	0.00	98	0.000	S =	1.43
Sidewalk	0.00	98	0.000	Total Runoff Depth(Q50) =	1.10 in
Building	0.02	98	2.434	Total Storm Volume (V) =	237 cf
Landscape	0.03	80	2.792	*Class D Soils w/ >75% Grass Cover	
				*Clace D Soile w/ 20% 70% ground cover	(Horbacoous)

Total A Comp "C" 0.06 87.49 *Class D Soils w/ 30%-70% ground cover (Herbaceous)

11-131 Cheney Elementary

RATIONAL & SCS METHOD	PROJECT: 25-121 Clark 53rd
DETENTION BASIN DESIGN	BASIN: N
	REVIEWER: AJS
Design Year: 50	DESIGNER: SCE
	DATE: 10/28/2025

RUNOFF STORAGE								TIME OF CO	DNCENTRATION ((minutes)
Single (Type A) exfiltration (cfs)	0.3	Orifice Outflow	0.0000					Tc (overland	1)	Tc (gutte
Militation (618)	9.0		0.0000					L(A) =	10	L(C) =
ime of Conc. (min)				5.00				K(A)	420	K(C) =
rea (Acres)				0.23				S(A) =	0.0194	S(C) =
composite "C"				0.48				()		(-)
08 Treated Area (ac	res)			0.09				Tc (A) =	0.17	Tc (C) =
olume Provided	,		208:	448.75	Storm:	996		()	****	(-)
Outflow (cfs)		Seenage	Ouflow Rate:	0.0050						
rea * C" Factor		occpage	(assumed)	0.11				L(B) =	0	
Coef. of Intensity	m·	10.68	(assumed)	0.11				K(B) =	Ö	Tc (C) =
,		0.635						S(B) =	0	Tc(A+B)
#1	#2	#3	#4	#5	#6	#7	-	Tc (B) =	0.00	Tc(tot.) =
Time	Time	Intensity	Q dev.	V in	V out	Storage		` '		Intensity
Inc.	Inc.	•								,
(min.)	(sec.)	(in./hr.)	(cfs)	(cu. ft.)	(cu. ft.)	(cu. ft.)				
	(#1*6Ó)		(A*C*#3)		(Outf.*#2)	(#5-#6)				
	,		/					Tc (total) = 7	C (overland) + Tc	(gutter)
5.00	300.00	3.84	0.42	171	1.50	169	-	Tc = L / [K\/(,
			-						f segment (ft)	
5	300	3.84	0.42	171	1.50	169			segment (feet/foo	t)
10	600	2.47	0.27	192	3.00	189			cover coefficient (f	
15	900	1.91	0.21	212	4.50	207			See Table 5-6 of SRSM for "K" values	
20	1200	1.59	0.18	229	6.00	223				
25	1500	1.38	0.15	245	7.50	237				
30	1800	1.23	0.14	259	9.00	250				
35	2100	1.12	0.14	271	10.50	261				
40	2400	1.03	0.11	283	12.00	271				
45	2700	0.95	0.11	294	13.50	281				
50	3000	0.89	0.10	305	15.00	290				
55	3300	0.84	0.09	315	16.50	298				
60	3600	0.79	0.09	324	18.00	306				
65	3900	0.75	0.08	333	19.50	314				
70	4200	0.72	0.08	342	21.00	321				
75	4500	0.69	0.08	350	22.50	327				
80	4800	0.66	0.07	358	24.00	334				
85	5100	0.64	0.07	365	25.50	340				
90	5400	0.61	0.07	372	27.00	345				
95	5700	0.59	0.07	379	28.50	351				
100	6000	0.57	0.06	386	30.00	356				
600	36000	0.18	0.02	732	180.00	552				
690	41400	0.17	0.02	771	207.00	564				
695	41700	0.17	0.02	773	208.50	564				
4320	259200	0.05	0.01	1502	1296.00	206	=			
98 SWALE POND C	CALCULATION	ve.								
		od [of] = 1133*A			100	u. ft.				
		d [cf] = 1815*A			160 6					
Must meet SRSM se				Provided:	448.75					
				-roviaca:	440.75	ou. IC				
TORAGE REQUIRE Max		YEAR DESIGN ST required by SCS N	Method (store en	ntire storm) = Provided:	881 o		Excess Storage	114.64		
Tin	ne for disposa	al of Full Storm Eve Tota	nt @ 0.0196 CF al Volume / Rate		48.94	IRS				
Tin	ne for disposa	of Surface Water								
			of Pond / Rate		48.94 I					

STORHAUG ENGINEERING Basin N

CONTRIBUTING AREAS Site 0.23 Acres 9951 s.f. Areas "C" A*C Areas (s.f.) Treat? (Ac.) Paved Driveway Sidewalk Building 0.09 0.900 0.900 0.0795 0.00 0.0000 0.00 0.900 0.900 0.220 0.0000 N 0.00 0.0000 0 6101 Landscape 0.14 0.0308 Qpeak 0.42 Total A Comp "C" Total Site 0.23 0.48 Connected Impervious 0.09 0.90 0.31 POND VOLUMES Bottom Depth to 208 208 Elevation Depth to Top Top Elevation Elevation 208 Storage Swale Elevation Elevation Volume Area Area Area Volume (sf) 807 (cf) 448.75 Number (ft) 0.50 (sf) 988 (sf) 1184 (cf) 995.5 Swale N

				448.75	996
PEAK RUNOFF VOLUME					
PEAK RUNOFF VOLUME	E (50-YR S	ORM, SCS M	ETHOD)		
	Areas	CN	A*C		
	(Ac.)				
Paved	0.09	98	8.662	P(50) =	2.2 in
Driveway	0.00	98	0.000	S =	1.50
Sidewalk	0.00	98	0.000	Total Runoff Depth(Q50) =	1.06 in
Building	0.00	98	0.000	Total Storm Volume (V) =	881 cf
Landscape	0.14	80	11.205	*Class D Soils w/ >75% Grass Cover	

Pipe Dia

(in)

Depth

*Class D Soils w/ 30%-70% ground cover (Herbaceous)

11-131 Cheney Elementary

Voids

Total A Comp "C" 0.23 86.96

Length

Gallery

Width

0.00

0.00 0.17

5.00 3.84

Chapter 4

NRCS SOILS MAP

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Spokane County, Washington

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
Spokane County, Washington	13
7120—Urban land-Marble, disturbed complex, 0 to 3 percent slop	es 13
7150—Urban land-Seaboldt, disturbed complex, 0 to 3 percent sk	opes 14
References	17

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

Custom Soil Resource Report

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Special Line Features Streams and Canals Interstate Highways Aerial Photography Very Stony Spot Major Roads Local Roads Stony Spot US Routes Spoil Area Wet Spot Other Rails Nater Features **Fransportation 3ackground** W 8 ◁ ŧ Soil Map Unit Polygons Area of Interest (AOI) Soil Map Unit Points Miscellaneous Water Soil Map Unit Lines Closed Depression Marsh or swamp Perennial Water Mine or Quarry Rock Outcrop Special Point Features **Gravelly Spot** Saline Spot Sandy Spot **Borrow Pit** Lava Flow Clay Spot **Gravel Pit** Area of Interest (AOI) Blowout Landfill 9 Soils

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Spokane County, Washington Survey Area Data: Version 15, Aug 28, 2023

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Severely Eroded Spot

Slide or Slip Sodic Spot

Sinkhole

Date(s) aerial images were photographed: May 9, 2022—Aug 15, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
7120	Urban land-Marble, disturbed complex, 0 to 3 percent slopes	0.5	8.4%
7150	Urban land-Seaboldt, disturbed complex, 0 to 3 percent slopes	5.3	91.6%
Totals for Area of Interest	,	5.8	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The

Custom Soil Resource Report

delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Spokane County, Washington

7120—Urban land-Marble, disturbed complex, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2mdn0 Elevation: 1,750 to 2,360 feet

Mean annual precipitation: 18 to 20 inches Mean annual air temperature: 45 to 50 degrees F

Frost-free period: 100 to 130 days

Farmland classification: Not prime farmland

Map Unit Composition

Urban land: 60 percent

Marble, disturbed, and similar soils: 35 percent

Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Urban Land

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8

Hydric soil rating: No

Description of Marble, Disturbed

Setting

Landform: Outwash plains

Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Sandy glaciofluvial deposits

Typical profile

A - 0 to 4 inches: loamy sand E - 4 to 8 inches: loamy sand E and Bt1 - 8 to 27 inches: sand E and Bt2 - 27 to 53 inches: sand

C - 53 to 60 inches: sand

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Very low (about 3.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4s

Hydrologic Soil Group: B

Custom Soil Resource Report

Ecological site: F043AY509WA - Warm, Xeric, Sandy, Outwash Terraces and Plains (Ponderosa Pine/Dry Grass) Pinus ponderosa / Pseudoroegneria

spicata, Pinus ponderosa / Festuca idahoensis

Other vegetative classification: ponderosa pine/Idaho fescue (CN140)

Hydric soil rating: No

Minor Components

Marblespring, disturbed

Percent of map unit: 3 percent Landform: Outwash terraces

Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Other vegetative classification: ponderosa pine/bluebunch wheatgrass (CN130)

Hydric soil rating: No

Hardesty, disturbed

Percent of map unit: 2 percent

Landform: Drainageways, depressions
Landform position (three-dimensional): Tread

Down-slope shape: Linear, concave Across-slope shape: Linear, concave

Other vegetative classification: ponderosa pine/ninebark (CN190)

Hydric soil rating: No

7150—Urban land-Seaboldt, disturbed complex, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2mdnp Elevation: 2.300 to 2.380 feet

Mean annual precipitation: 18 to 20 inches Mean annual air temperature: 46 to 52 degrees F

Frost-free period: 100 to 130 days

Farmland classification: Not prime farmland

Map Unit Composition

Urban land: 45 percent

Seaboldt, disturbed, and similar soils: 40 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Urban Land

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8

Hydric soil rating: No

Description of Seaboldt, Disturbed

Setting

Landform: Outwash plains on plateaus
Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Loess mixed with minor amounts of volcanic ash over glaciofluvial

deposits over residuum from basalt

Typical profile

Ap1 - 0 to 7 inches: ashy loam
Ap2 - 7 to 10 inches: ashy loam
Bw1 - 10 to 16 inches: loam
2Bw2 - 16 to 23 inches: sandy loam

2C - 23 to 28 inches: extremely gravelly sandy loam

3R - 28 to 38 inches: bedrock

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20

to 0.57 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 4.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3s

Hydrologic Soil Group: C

Ecological site: F009XY001WA - Mesic Xeric Loamy Hills and Canyons

Ponderosa Pine Moderately Warm Dry Shrub

Other vegetative classification: ponderosa pine/common snowberry (CN170)

Hydric soil rating: No

Minor Components

Uhlig, disturbed

Percent of map unit: 5 percent Landform: Outwash terraces

Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Other vegetative classification: ponderosa pine/bluebunch wheatgrass (CN130)

Hydric soil rating: No

Brincken, moist, disturbed

Percent of map unit: 5 percent

Landform: Outwash terraces on loess hills Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Other vegetative classification: ponderosa pine/Idaho fescue (CN140)

Custom Soil Resource Report

Hydric soil rating: No

Phoebe, disturbed

Percent of map unit: 3 percent Landform: Outwash plains

Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Other vegetative classification: ponderosa pine/common snowberry (CN170)

Hydric soil rating: No

Marble, disturbed

Percent of map unit: 2 percent Landform: Outwash plains

Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Other vegetative classification: ponderosa pine/Idaho fescue (CN140)

Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

Custom Soil Resource Report

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Chapter 5

GEOTECHNICAL REPORT

Revised Geotechnical Engineering Report

5114 South Palouse Highway & 3227 East 53rd Avenue
Parcel No: 34032.0704, 34032.9093
Spokane, Washington 99223

Prepared For:

Will Clark
Palouse Landing LLC
2910 E 57th Avenue 5-122
Spokane, Washington 99223

Prepared By:

Liberty Geotechnical Engineering, Inc. 3012 N Sullivan Rd Spokane Valley, Washington 99216 (509) 213-0400

Report Date: July 28, 2023 Job Number: 23010

Table of Contents

1.0 EXECUTIVE SUMMARY	2
2.0 PROPOSED CONSTRUCTION	2
3.0 GEOTECHNICAL EXPLORATION	3
3.1 Geology, Topography, and Current Site Use	3
3.2 Summary of Soil and Rock Encountered During Exploration	4
3.3 Estimated Groundwater and Bedrock Elevations	4
3.4 Test Pit Remediation	4
4.0 LABORATORY TESTING RESULTS	4
4.1 Summary of Laboratory Testing Results	5
5.0 GEOTECHNICAL RECOMMENDATIONS	5
5.1 Earthwork	5
5.1.1 Subgrade Preparation	5
5.1.2 Earthwork Soil Products, Compaction, and Testing Frequency	6
5.1.3 Excavation Construction Considerations	8
5.1.4 Weather-Related Earthwork Considerations	9
5.2 Shallow Foundation Design	9
5.3 Concrete Slab Design and Construction Considerations	10
5.4 Seismicity and Liquefaction	11
5.5 Lateral Earth Pressure Design	11
5.6 Pavement Section Design Recommendations	12
6.0 DESIGN REVIEW AND CONSTRUCTION OBSERVATIONS	12
6.1 Geotechnical Consultant versus Geotechnical Inspector	12
6.2 Revisions and Transfer of Geotechnical Recommendations	12
7.0 REFERENCES	13

Appendices

Appendix A: Exploration Site Plan

Appendix B: Subsurface Exploration Logs Appendix C: Laboratory Testing Results

Appendix D: Photo Log

1.0 EXECUTIVE SUMMARY

The following revised geotechnical engineering report has been prepared for the proposed multi-family residences located at 5114 South Palouse Highway and 3227 East 53rd Avenue in Spokane, Washington. From a geotechnical perspective, the following concepts were identified as favorable for the proposed construction:

- The site is suitable for the proposed multi-family residences provided the report recommendations are implemented.
- The residual bedrock or basalt bedrock at the site will provide adequate bearing capacity for the foundation of the proposed construction.

The following items have been identified at the project site and proposed construction that should be carefully considered during design and construction:

- Undocumented fill was observed in TP-4 and TP-5 to depths of 0.5 and 1.5 feet below the ground surface, respectively. The undocumented fill should be removed and replaced with compacted *Structural Fill* below any settlement-prone structures.
- All test pits met refusal due to bedrock to depths ranging from 1.5 to 5 feet below the ground surface. A hydraulic breaker is likely to be required to excavate underground utilities within intact bedrock.
- Foundations should bear on intact bedrock, residual bedrock or compacted Structural Fill
 placed over bedrock to avoid differential settlement. Intact bedrock should be
 over-excavated by six inches if a portion of the building's foundation is not bearing on
 residual bedrock or Structural Fill.
- Groundwater seepage was encountered in TP-2 at a depth of 5 feet. Stormwater design and grading should incorporate the observed groundwater elevations, account for seasonal fluctuations, and depth to bedrock.
- A separate Geotechnical Report Addendum was provided for stormwater infiltration recommendations, dated July 24, 2023. Stormwater drywells are not suitable due to the shallow bedrock encountered at the site.

If Liberty Geotech (or an approved third-party testing firm) is not afforded the opportunity to observe and test as recommended in this report, Liberty Geotech is not the engineer of record. Furthermore, Liberty Geotech does not have any liability for the recommendations provided if no observations or testing is performed. Liberty Geotech is available to discuss these items further in-person or via a conference call.

2.0 PROPOSED CONSTRUCTION

The proposed construction consists of several multi-family residences along with associated stormwater management facilities and pavement areas. The construction is assumed to consist of 3-story, wood-framed, 4-plexes and duplexes. Building foundations are assumed to be

shallow concrete footings with concrete slab-on-grade flooring support. No basement or subgrade floor area is anticipated.

3.0 GEOTECHNICAL EXPLORATION

Subsurface exploration was performed by excavating three test pits with a SANY SY26U mini-excavator. Subsurface exploration was performed at the project site on February 6, 2023. Additional exploration with six test pits was performed on July 12, 2023. The test pits were excavated through the topsoil, undocumented fill, glacial flood deposits, loess, residual bedrock, extremely weathered bedrock, and terminated on the rock surface. The contractor or client is recommended to notify Liberty Geotech if the soil conditions are different from those described in the following sections.

Throughout this report, test pits are abbreviated TP and are hyphenated with a numbering system that corresponds to Appendix A: *Exploration Site Plan* and Appendix B: *Subsurface Exploration Logs*. The test pits depicted in Appendix A were located using the accuracy of a cell phone location system. The locations were not surveyed and the accuracy is expected to be within 10 feet of the depicted location. Also, the elevation of each test pit was estimated using the Google Earth™ mapping service with the GWS84 EGM96 geoid.

3.1 Geology, Topography, and Current Site Use

The *Preliminary Geologic Map of the Spokane SE 7.5-minute Quadrangle, Spokane County, Washington* (Derkey, 1999) was reviewed to determine the geologic deposit at the site. The geologic map indicated that the geologic unit was the Wanapum Basalt, Priest Rapids Member. In addition, the United States Department of Agriculture (USDA), Natural Resources Conservation Service (NRCS) Web Soil Survey (NRCS, 2023) was reviewed. The soil survey indicates that the soil units are the following:

- Urban land-Seaboldt, a disturbed complex consisting of ashy loam from the ground surface to a depth of 10 inches, loam from 10 inches to 16 inches, sandy loam from 16 inches to 23 inches, extremely gravelly sandy loam from 23 inches to 28 inches, and bedrock from 28 inches to 38 inches. The soil survey describes the soil as loess mixed with minor amounts of volcanic ash over glaciofluvial deposits over residuum from basalt.
- Urban land-Marble, a disturbed complex consisting of loamy sand from the ground surface to a depth of 8 inches, and sand from 8 inches to 60 inches. The soil survey describes the soil as sandy glaciofluvial deposits.

The site is currently a vacant lot and is sparsely vegetated with trees and grasses. The topography obtained from Google Earth™ shows that the site is relatively level with approximately 20 feet of relief. The historical aerial imagery shows no significant historical disturbance at the site.

3.2 Summary of Soil and Rock Encountered During Exploration

The soil encountered during the exploration is generally consistent with the geologic research. Undocumented fill was observed in TP-4 and TP-5. Generally, the test pits encountered topsoil or loess overlying residual and weathered bedrock and met refusal due to bedrock. The residual bedrock and loess soils were classified as silty sand, silty gravel, and sandy silt. In addition, the extremely weathered basalt bedrock was friable to well-graded sand with gravel and well-graded gravel with silt and sand. Basalt cobbles were observed across the site.

3.3 Estimated Groundwater and Bedrock Elevations

Groundwater was observed in TP-2 at a depth of five feet. It is anticipated that groundwater will be present in perched locations at the interface between the topsoil or residual basalt and basalt bedrock. According to the well logs in the vicinity of the site (Ecology), the approximate depth of the static water level is 30 feet below the land surface. Seasonal and annual fluctuations in groundwater levels should be anticipated.

All test pits met refusal at depths ranging from 1.5 and 5 feet below the ground surface.

3.4 Test Pit Remediation

The test pits were backfilled using the excavator's bucket in two-foot lifts. The soil was not moisture conditioned. The soil density is much lower than required for *Structural Fill*.

The earthwork contractor and owner should locate the test pits and remediate them at least three feet below the bottom of all foundations and two feet below all slabs or other settlement-prone structures. Remediation is removing the fill, replacing it with *Structural Fill*, and compacting the *Structural Fill*. The location of the test pits was staked in the field and is shown on Plate 1 in Appendix A. If necessary, contact Liberty Geotech prior to construction to have the test pit locations re-staked in the field for remediation.

4.0 LABORATORY TESTING RESULTS

Soil samples were obtained in the exploration locations at varying depths to characterize the extremely weathered bedrock and residual bedrock. The results of laboratory testing results are presented in Appendix C: *Laboratory Testing Results*. The laboratory testing was performed referencing the following American Society for Testing and Material Standard Methods (ASTM):

- ASTM D1140 Amount of Material in Soils Finer than the No. 200 Sieve,
- ASTM D2216 Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, and
- ASTM D6913 Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis.

4.1 Summary of Laboratory Testing Results

The following table summarizes the laboratory tests that were performed on the soil samples obtained from the site. Additional details are provided in Appendix B and C.

Table 4.1.A - Summary of Laboratory Testing

Soil Unit	Lab Tests Performed	Summary of Results
Residual Bedrock	 Percent Passing No. 200 Sieve Gradation Sieve Natural Moisture Content 	Soil is classified as silty sand. • C _u : 15.3 - 18.8 • C _c : 0.9 - 1.6 • % Passing No. 200: 18% - 24% • Moisture Content: 12.1% - 13.8%
Loess	 Percent Passing No. 200 Sieve Gradation Sieve Natural Moisture Content 	Soil is classified as sandy silt. C _u : 6.0 C _c : 1.5 % Passing No. 200: 47% - 60% Moisture Content: 8.3% - 10.9%
Glacial Flood Deposits	 Percent Passing No. 200 Sieve Gradation Sieve Natural Moisture Content 	Soil is classified as poorly-graded sand with sand. • C _u : 4.1 • C _c : 1.6 • % Passing No. 200: 7% • Moisture Content: 3.4%

5.0 GEOTECHNICAL RECOMMENDATIONS

5.1 Earthwork

The following recommendations should be considered by the general contractors and earthwork subcontractors prior to providing a cost estimate for the earthwork on the project.

5.1.1 Subgrade Preparation

Clear and grub all vegetation, strip all topsoil, and remove undocumented fill to prepare the subgrades under all shallow foundations, floor areas (either slab-on-grade or wood-framed flooring areas), deck column pads, or pavement areas. Topsoil and undocumented fill removal are estimated to be 0.5 to 1.5 feet across the project site. All footings should bear on residual

basalt bedrock, basalt bedrock, or *Structural Fill* placed on residual basalt bedrock or extremely weathered basalt bedrock.

All stormwater facilities should be a minimum of ten feet from foundations and hardscapes to minimize the effects of improvements.

Liberty Geotech should be contacted once the subgrade areas have been exposed to review the subgrade conditions.

5.1.2 Earthwork Soil Products, Compaction, and Testing Frequency

Different soil products should be used for different applications. The following table presents recommendations for anticipated earthwork construction:

Table 5.1.2.A - Soil product selection.

Soil Product	Project Use	Soil Description
Structural Fill	 Fill areas under the foundation. Fill to achieve subgrade under the slab or driveway. Backfill of shallow foundations. 	Soil classified as:
Concrete Slab Cushion	Fill immediately below slab-on-grades, sidewalks, and exterior hardscapes.	Soil should meet the percent passing the following sieve size: • 1": 80-100% • No. 4: 25-65% • No. 200: 6% maximum Soil should be free of organics, clay fines, deleterious material, and all material larger than 2-inches in diameter.
Crushed Surfacing	Fill immediately below slab-on-grades, asphaltic pavement, concrete pavement, sidewalks, and exterior hardscapes.	Crushed rock should meet the percent passing the following sieve size: • 1-1/4": 99-100% • 1": 80-100% • 5/8": 50-80% • No. 4: 25-45% • No. 40: 3-18% • No. 200: 7.5% maximum • Sand equivalent: 40 minimum Also, the material should be free of

		wood, roots, bark, and deleterious material. For roadway base the following requirements should also be met: • Fracture face: 75%, minimum • Los Angeles Wear, 500 rev: 35%, maximum. • Degradation factor: 15 minimum.
Landscaping Fill	 Non-structural fill areas. Vegetated areas. 	Soil meeting the following requirements: Silt or Clay: 35% to 70% Sand: 20% to 60% Organic material: 2% to 20% Deleterious materials (gravel, rock, slag, cinder, roots, sod): 5% max pH between 5 and 7

The following table provides compaction recommendations specific to ASTM D1557 *Laboratory Compaction Characteristics of Soil Using Modified Effort.* All fill products should be compacted in lifts of soil not exceeding 12 inches measured prior to compaction.

Recommended Compaction

dry density of Modified Proctor.

Table 5.1.2.B - Compaction recommendation.

Vegetated areas.

Project Use

 Fill areas under the foundation. Fill to achieve subgrade under the slab or driveway. Fill immediately below slab-on-grades. Fill immediately below the asphaltic-concrete pavement, concrete pavement, sidewalks, and exterior hardscapes. 	95 percent of the maximum dry density of Modified Proctor.
Exterior wall backfill.Utility trench backfills.	92 percent of the maximum dry density of Modified Proctor.
Non-structural fill areas.	80 to 85 percent of the maximum

If more than 30 percent of native or imported *Structural Fill* material is retained on the ¾" sieve, ASTM D1557 *Laboratory Compaction Characteristics of Soil Using Modified Effort* is not recommended to be used. In this case, a soil-specific method specification can be developed. A nuclear density gauge can be used during earthwork operations to establish a moisture and compaction method that provides an acceptable maximum dry density. Method specification earthwork operations are recommended to have full-time soil testing to ensure adequate compaction.

The soil products are recommended to have passing compaction testing results at the following frequency to ensure the soil is uniformly meeting compaction requirements. Failing test results should be retested after additional compactive effort and, if necessary, water is added. At least 90% of the compaction testing results must achieve the required maximum dry density or as approved by the engineer of record.

Table 5.1.2.C - Testing Frequency.

Project Use <u>Testing Frequency</u>

Below interior building concrete slabs for fill less than a vertical foot.	2,500 square feet and a minimum of 2 tests.
 Along the building footings for every vertical foot of fill. 	50 lineal feet and a minimum of 2 tests.
Structural fill placements larger than one foot in height	100 cubic yards
Fill under asphalt parking areas and exterior concrete flatwork	5,000 square feet and a minimum of 2 tests.
Utility trenches for every two vertical feet of trench backfill.	300 lineal feet and a minimum of 2 tests.

The jurisdictional requirements should be conformed to if there is a conflict with the requirements of Table 5.1.2.C. Excavations deeper than four feet must have adequate trenching protection or sloped back in accordance with state and federal requirements in order to be compaction tested.

5.1.3 Excavation Construction Considerations

Topsoil, undocumented fill, glacial flood deposits, loess, residual bedrock, and extremely weathered basalt are removable with a toothed bucket on an excavator. A hydraulic breaker may be required to excavate underground utilities within intact bedrock.

No excavation support or sloped excavation has been reviewed in preparation for this report. The contractor should perform excavations in accordance with state and federal regulations. If requested, Liberty Geotech is available to provide further analysis of excavation support or shoring design. Liberty Geotech is not responsible for the safety of trenches, excavations, or shoring support.

5.1.4 Weather-Related Earthwork Considerations

Wet weather, freezing conditions, or snow can impede or prevent earthwork operations. The following recommendations should be considered by the contractors and owners during construction:

- 1. It is not recommended that soil products be placed during freezing conditions. No concrete or soil products should be placed on frozen soil.
- 2. The on-site soils and other imported materials may become saturated during earthwork operations and will reduce operation production.
- 3. Stockpiles of soil products should be protected during wet weather. Soil products that have been compacted should be protected and not traveled on during wet weather to prevent disturbing the subgrade.

This report does not provide recommendations for erosion, runoff, track out from trucks removing site stripping, or environmental considerations associated with earthwork operations.

5.2 Shallow Foundation Design

The following design parameters are provided based on the project understanding described in Section 2.0. Liberty Geotech should be notified to revise or confirm the following recommendations if the building location, locations of the site improvements, or structural loads change.

- Allowable bearing capacity for foundations on residual bedrock: 2,500 psf.
- Allowable bearing capacity for foundations on compacted *Structural Fill*: 2,500 psf.
- Allowable bearing capacity for foundations on weathered or intact bedrock: 3,000 psf.
- Footing embedment for exterior foundations on residual bedrock or Structural Fill: 2 feet
- Estimated total settlement for foundations on *Structural Fill*: Less than 1 inch. Minimal settlement for foundations on intact bedrock.
- A sliding coefficient of friction between the shallow foundations and residual bedrock or Structural Fill of 0.40 may be used.

Differential settlement can occur when two different foundations exert different bearing pressures on the soil. The magnitude of the differential settlement depends on the foundation pressure difference. Or, differential settlement can occur due to differences in the soil resistance to the foundation pressure. Foundations are not recommended to bear on both *Structural Fill* and intact bedrock to prevent differential settlement. Intact bedrock should be over-excavated by six inches if a portion of the building foundations are not bearing on residual bedrock or *Structural Fill*. The potential for differential settlement for this site is low due to the shallow bedrock. Differential settlement is anticipated to be less than ½ inch.

All foundations constructed on bedrock do not need to be embedded for frost heave. Foundations that are constructed on residual bedrock or *Structural Fill* should be embedded two feet below the adjacent exterior ground surface to mitigate frost heave.

5.3 Concrete Slab Design and Construction Considerations

The following recommendations should be considered to be the minimum design requirements. The structural engineer's design supersedes these recommendations. A structural engineer should design concrete slabs supporting more than 200 pounds per square foot.

- The concrete slab should be a minimum of four inches thick.
- The slab reinforcement is recommended to not be less than No. 3 rebar, 18 inches on center in both directions, and constructed in the middle of the slab. There is a high probability that the concrete slab will crack if rebar is not constructed in the slab.
- The modulus of subgrade support is recommended to be 250 pounds per square inch per inch (pci).
- The slab should be supported with four inches of compacted *Concrete Slab Cushion* soil in accordance with Section 5.1.

Vapor transmission through the concrete slabs may damage moisture-sensitive floor coverings. Also, substantial moisture can penetrate slabs if they are cast on soils that are saturated. The moisture may be measured and should not be above 3 pounds per 1,000 square feet per 24-hour period as measured in ASTM F2170 Standard Test Method for Measuring Vapor Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride. In addition, the in-situ relative humidity measurements may be determined at 40 percent of the slab depth. The client should consult with the flooring manufacturer for an acceptable slab relative humidity measurement prior to installing floor coverings. The relative humidity measurements should be made in accordance with ASTM F2170 Determining Relative Humidity in Concrete Floor Slabs Using in situ Probes.

The design and ownership team should carefully consider the design publication *Guide to Concrete Floor and Slab Construction* (ACI, 2015) before omitting a vapor retarder under the slab. If a moisture retarder is used, it should meet the requirements of ASTM E1643: *Selection, Design, Installation, and Inspection of Water Vapor Retarders Used in Contact with Earth or Granular Fill Under Concrete Slabs*.

Concrete slabs can crack because of numerous reasons. The following considerations should be mitigated during construction to reduce the risk of the concrete slab cracking.

The concrete mix design can be altered based on the ambient temperature, aggregate
moisture content, anticipated time in the mix truck, and finishing methods. A poorly
designed mix that does not incorporate these factors can cause concrete slabs to crack.

 The contractor's means and methods can cause concrete slabs to crack including improper placement of rebar support, improper crack control joints, improper curing methods or poor finishing techniques, and placing concrete during cold or hot weather.

5.4 Seismicity and Liquefaction

The proposed site is designated a **Site Class D**. The following table presents seismicity coefficients referencing the 2018 International Building Code (IBC) code. The acceleration parameters listed are based on interpolated values calculated from the ASCE 7-16 code (OSHPD). The interpolations were visually confirmed with the maps in Table 1613.2.1(1) through 1613.2.1(8) in the 2018 IBC.

Table 5.4.A Seismic Design Parameters

0.2 Second MCE Spectral Response Acceleration	S₅	0.307
0.2 Second MCE Spectral Response Acceleration	S ₁	0.111
1.0 Second MCE Spectral Response Acceleration	S _{DS}	0.318
1.0 Second MCE Spectral Response Acceleration	S _{D1}	0.176
Design Peak Ground Acceleration	PGАм	0.21

Latitude: 47.607294,

Longitude: -117.36003

There is a very low potential for liquefaction based on the *Liquefaction Susceptibility Map of Spokane County, Washington*.

5.5 Lateral Earth Pressure Design

The following table provides equivalent fluid pressures recommended to be used by the structural engineer. Walls with a back slope or slope in front of the wall (toe slope) should have the global stability analyzed.

Table 5.5.A Lateral Earth Pressure Design Parameters

Equivalent Fluid Pressure Designation	<u>Unit Weight (PCF)</u>
Active Equivalent Fluid Pressure	40
At-rest Equivalent Fluid Pressure	60

*	**************************************
Passive Equivalent Fluid Pressure	400
i assive Equivalent i luid i ressure	700
*	
	:

Concrete walls that are fully restrained should be designed for at-rest equivalent fluid pressure. Flexible walls or concrete walls that are allowed to crack may be designed for the active equivalent fluid pressure. Soil that is preventing a retaining wall or foundation wall from sliding may be analyzed with the passive equivalent fluid pressure.

5.6 Pavement Section Design Recommendations

The following pavement design recommendations are provided for 3.0 inches of asphaltic-concrete pavement over 6.0 inches of *Crushed Surfacing*. The Structural Number for this pavement section is 1.76 and the number of passes with an equivalent single-axle load (ESAL) is 30,000. The following design parameters were used in the analysis:

- Subgrade support modulus, M_r: 7,160 psi.
- Reliability percent: 80%.
- Standard deviation: 0.45.
- Asphaltic-concrete layer coefficient, a1: 0.42.
- Aggregate base layer coefficient, a2: 0.12.
- Drainage coefficient of aggregate base, m: 0.70.

Paving operations can be observed and tested by Liberty Geotech at the request of the owner. Asphalt should be compacted to 92 percent of the Rice density. Liberty Geotech can provide additional traffic analysis or life-cycle cost analysis upon request.

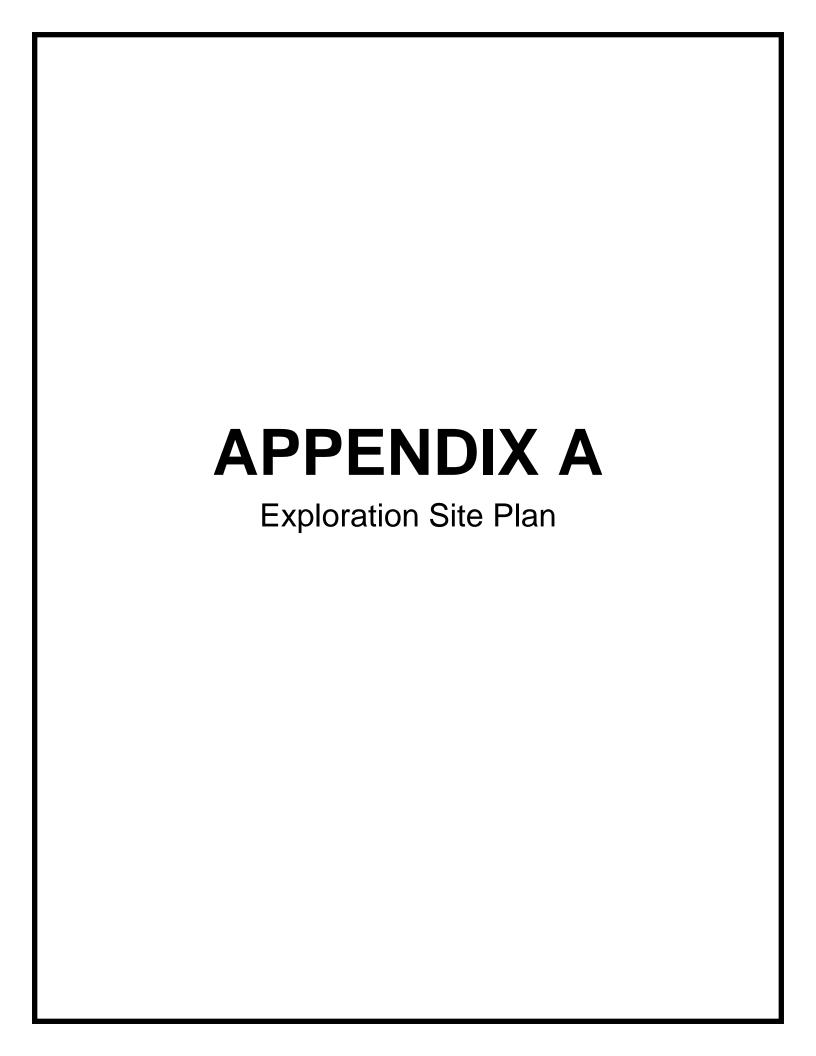
6.0 DESIGN REVIEW AND CONSTRUCTION OBSERVATIONS

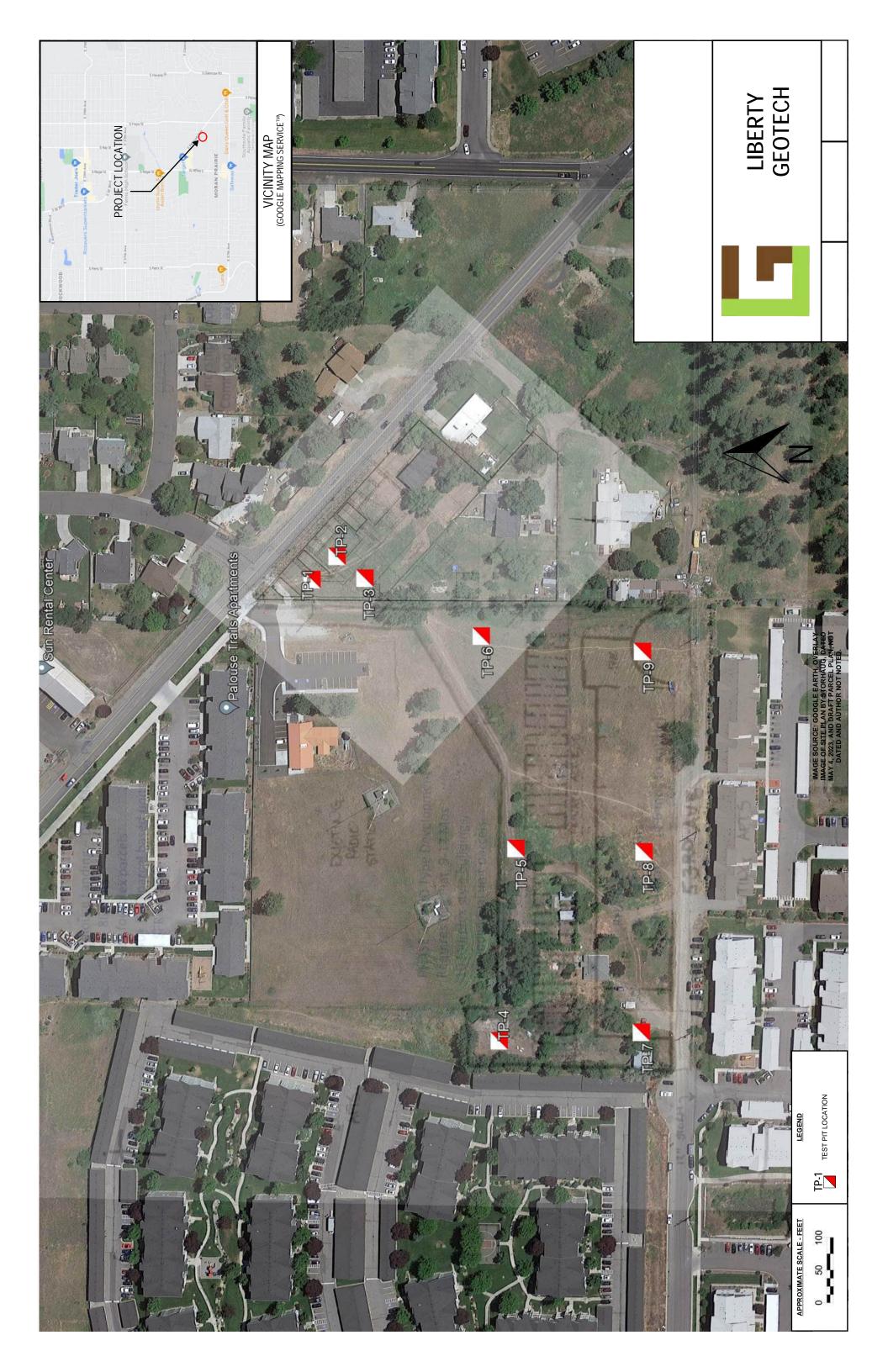
6.1 Geotechnical Consultant versus Geotechnical Inspector

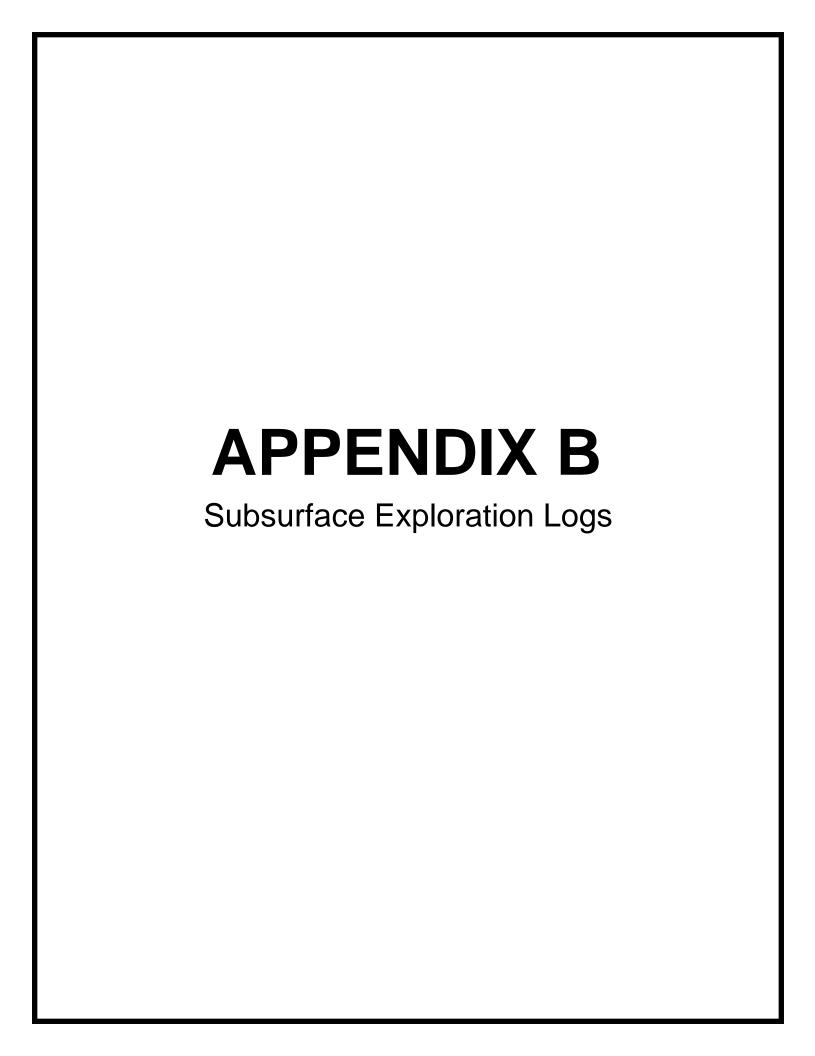
In order to retain Liberty Geotech as the geotechnical engineer of record, the client must contact Liberty Geotech or require their contractor to contact Liberty Geotech to perform the observations and notifications that are recommended within this report. Liberty Geotech is not the engineer of record and has no liability for the construction or design based on this report if observations and material testing are not performed and meet the recommendations contained within this report. In addition, Liberty Geotech's liability is limited to the authorized proposal dated January 17, 2023.

6.2 Revisions and Transfer of Geotechnical Recommendations

Liberty Geotech should be notified to update recommendations if the proposed development changes or subsurface soil or groundwater conditions vary from those described in this report. This report cannot be relied upon by property owners adjacent to this property without confirmation of their specific site soil conditions. Also, the report recommendations cannot be




transferred to other business entities or subsequent property owners without written authorization. No warranty or certification of construction is provided with this report. Liberty Geotech should review the final construction drawings to confirm the incorporation of the recommendations of this report.


7.0 REFERENCES

- ACI Committee 302. "Guide for Concrete Floor and Slab Construction." ACI 302.1R-15.

 American Concrete Institute, P.O. Box 19150 Redford Station, Detroit, Michigan 48219.
- Applied Technology Council (ATC). "Hazards by Location." Accessed February 27, 2023. https://hazards.atcouncil.org/
- Derkey, Robert E., Hamilton, Michael M., Stradling, Dale F., 1999. Preliminary Geologic Map of the Spokane SE 7.5-minute Quadrangle, Spokane County, Washington. Washington Division of Geology and Earth Resources.
- Palmer, Stephen P., Magsino, Sammantha L., Bilderback, Eric L., et. al., 2004. "Liquefaction Susceptibility Map of Spokane County, Washington." Washington State Department of Natural Resources.
- United States Department of Agriculture, Natural Resources Conservation Service. "Web Soil Survey." Accessed July 26, 2023. http://websoilsurvey.nrcs.usda.gov/
- Washington State Department of Ecology. "Washington State Well Report Viewer." Accessed February 27, 2023. fontess.wa.gov/ecy/wellconstruction/map/WCLSWebMap/

	MAJOR DI	VISIONS	GRAPHIC SYMBOL	USCS GROUP SYMBOL	SOIL DECRIPTION
		CLEAN GRAVEL		GW	WELL-GRADED GRAVEL
	GRAVEL	CLEAN GRAVEL		GP	POORLY-GRADED GRAVEL
	OIWILL	GRAVEL WITH FINES		GM	SILTY GRAVEL SILTY GRAVEL WITH SAND
COURSE			GC	CLAYEY GRAVEL CLAYEY GRAVEL WITH SAND	
SOIL CLEAN SAND		SW	WELL-GRADED SAND		
	SAND	OLL, III O, III D		SP	POORLY-GRADED SAND
	0,1112	SAND WITH FINES		SM	SILTY SAND
		9,41,5 ,11111111125		sc	CLAYEY SAND
	011.7	FAND OLAY		ML	INELASTIC SILT
	LIC	Γ AND CLAY QUID LIMIT S THAN 50%		CL	LEAN CLAY
				OL	ORGANIC SILT
FINE GRAINED				MH	ELASTIC SILT
SOIL	SII	T AND CLAY		СН	FAT CLAY
	LI	QUID LIMIT TER THAN 50%		ОН	ORGANIC CLAY
				PT	PEAT
					BASALT

ABBREVATIONS
BGS - BELOW EXISTING GROUND SURFACE
N.E. - NOT ENCOUNTERED

USCS DESCRIPTION	ELEVATION (FT)	DEPTH (FT)	LITHOLOGY	SAMPLE INTERVAL	POCKET PEN. (TSF)	% PASSING NO. 200 SIEVE	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	VOID RATIO (%)	ADDITIONAL NOTES
TOPSOIL - Sandy Silt (ML) Soft, Light Brown, Moist			- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1							
RESIDUAL BEDROCK - Silty Sand (SM) Dense, Brown, Moist	-	_								
BASALT - Extremely Weathered, Medium Strength, Black,	_2375 -	- 5								

Test pit terminated at 5-feet bgs due to bedrock.

Client: Palouse Landing LLC	Test Pit Number: 1
Project: 5114 South Palouse Highway	Project Number: 23010
Equipment: SANY SY26U	Date Excavated: 2/6/2023
Depth to Groundwater: NE	Logged By: AGR

Sheet: 1 of 9

USCS DESCRIPTION	ELEVATION (FT)	DEPTH (FT)	LITHOLOGY	SAMPLE INTERVAL	POCKET PEN. (TSF)	% PASSING NO. 200 SIEVE	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	VOID RATIO (%)	ADDITIONAL NOTES
TOPSOIL - Sandy Silt (ML) Soft, Brown, Moist										
RESIDUAL BEDROCK - Silty Sand (SM) Medium Dense to Dense, Brown, Moist	-	_		1 1 1-Gallon Bag I I		24		12.1		
	_ _2375	<u>-</u> - ▽5		1 1 1-Gallon Bag 1		18		13.8		

Test pit terminated at 5-feet bgs due to bedrock.

Client: Palouse Landing LLC	Test Pit Number: 2
Project: 5114 South Palouse Highway	Project Number: 23010
Equipment: SANY SY26U	Date Excavated: 2/6/2023
Depth to Groundwater: 5	Logged By: AGR

Sheet: 2 of 9

USCS DESCRIPTION	ELEVATION (FT)	DEPTH (FT)	LITHOLOGY	SAMPLE INTERVAL	POCKET PEN. (TSF)	% PASSING NO. 200 SIEVE	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	VOID RATIO (%)	ADDITIONAL NOTES
TOPSOIL - Sandy Silt (ML) Soft, Brown, Moist										
RESIDUAL BEDROCK - Silty Sand (SM) Loose, Brown, Moist										
BASALT - Extremely Weathered, Medium Strength, Black,	_2375	-								

Test pit terminated at 4-feet bgs due to bedrock.

Client: Palouse Landing LLC	Test Pit Number: 3
Project: 5114 South Palouse Highway	Project Number: 23010
Equipment: SANY SY26U	Date Excavated: 2/6/2023
Depth to Groundwater: NE	Logged By: AGR

Sheet: 3 of 9

USCS DESCRIPTION	ELEVATION (FT)	DEPTH (FT)	LITHOLOGY	SAMPLE INTERVAL	POCKET PEN. (TSF)	% PASSING NO. 200 SIEVE	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	VOID RATIO (%)	ADDITIONAL NOTES
UNDOCUMENTED FILL - Poorly-Graded Gravel with Silt (GP-GM) Soft, Gray, Dry GLACIAL FLOOD DEPOSITS - Poorly-Graded Sand with Silt (SP-SM) Medium Dense, Brown, Dry to Moist	_2380	-	0,000	1-Gallon Bag 		7		3.4		

Test pit terminated at 3-feet bgs due to bedrock.

Client: Palouse Landing LLC	Test Pit Number: 4
Project: 5114 South Palouse Highway	Project Number: 23010
Equipment: SANY SY26U	Date Excavated: 7/12/2023
Depth to Groundwater: NE	Logged By: BB

USCS DESCRIPTION	ELEVATION (FT)	ОЕРТН (FT)	ПТНОГОСУ	SAMPLE INTERVAL	POCKET PEN. (TSF)	% PASSING NO. 200 SIEVE	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	VOID RATIO (%)	ADDITIONAL NOTES
UNDOCUMENTED FILL - Silty Gravel (GM) Medium Dense, Brown, Dry	_	_								
LOESS - Silty Sand (SM) Medium Dense, Brown, Dry	_2385	_				47		10.9		

Test pit terminated at 4-feet bgs due to bucket refusal on basalt bedrock.

Client: Palouse Landing LLC	Test Pit Number: 5
Project: 5114 South Palouse Highway	Project Number: 23010
Equipment: SANY SY26U	Date Excavated: 7/12/2023
Depth to Groundwater: NE	Logged By: BB

Sheet: 5 of 9

USCS DESCRIPTION	ELEVATION (FT)	DEPTH (FT)	LITHOLOGY	SAMPLE INTERVAL	POCKET PEN. (TSF)	% PASSING NO. 200 SIEVE	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	VOID RATIO (%)	ADDITIONAL NOTES
LOESS - Silty Gravel (GM) Medium Dense, Brown, Dry	2383	_								

Test pit terminated at 2-feet bgs due to bucket refusal on basalt bedrock.

Client: Palouse Landing LLC	Test Pit Number: 6
Project: 5114 South Palouse Highway	Project Number: 23010
Equipment: SANY SY26U	Date Excavated: 7/12/2023
Depth to Groundwater: NE	Logged By: BB

Sheet: 6 of 9

USCS DESCRIPTION	ELEVATION (FT)	DEPTH (FT)	LITHOLOGY	SAMPLE	POCKET PEN. (TSF)	% PASSING NO. 200 SIEVE	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	VOID RATIO (%)	ADDITIONAL NOTES
LOESS - Sandy Silt (ML) Medium Dense, Dark Brown to Brown, Dry	_2385	_								

Test pit terminated at 2.3-feet bgs due to bucket refusal on basalt bedrock.

Client: Palouse Landing LLC	Test Pit Number: 7
Project: 5114 South Palouse Highway	Project Number: 23010
Equipment: SANY SY26U	Date Excavated: 7/12/2023
Depth to Groundwater: NE	Logged By: BB

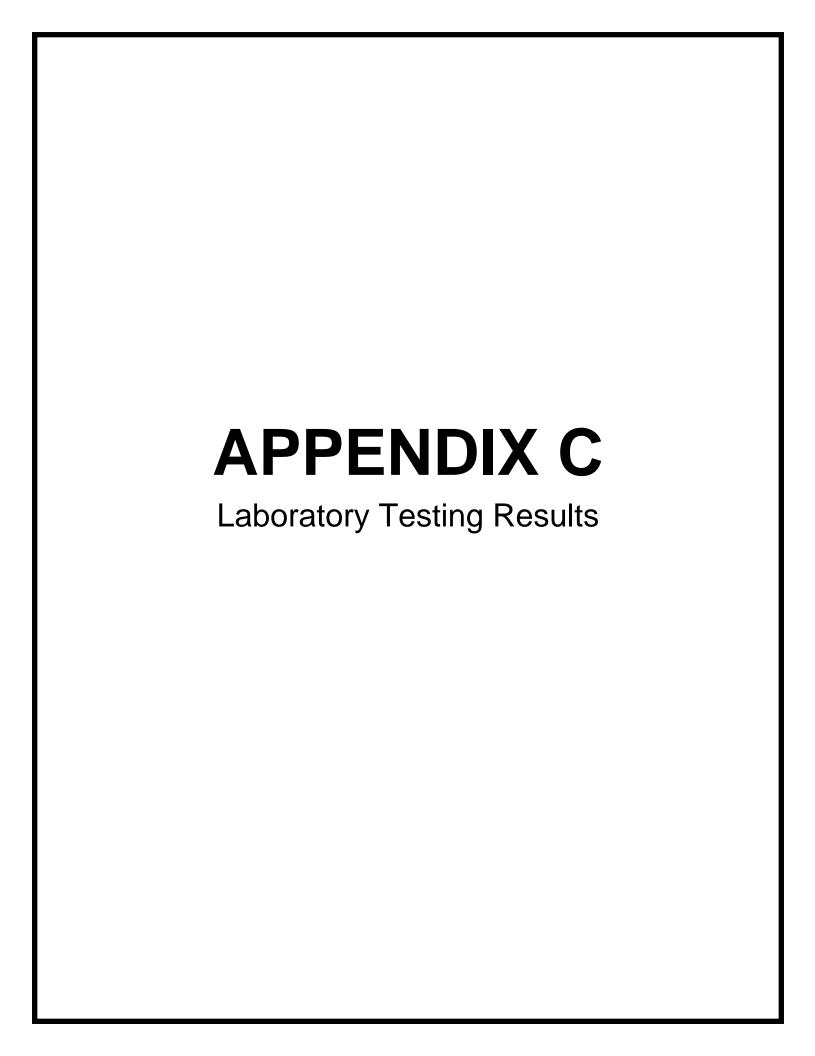
Sheet: 7 of 9

USCS DESCRIPTION	ELEVATION (FT)	DEPTH (FT)	гітногосу	SAMPLE INTERVAL	POCKET PEN. (TSF)	% PASSING NO. 200 SIEVE	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	VOID RATIO (%)	ADDITIONAL NOTES
LOESS - Sandy Silt (ML) Medium Stiff, Dark Brown to Brown, Dry	2388	_		l-Gallon Bag I		60		8.3		

Test pit terminated at 2-feet bgs due to bucket refusal on basalt bedrock.

Client: Palouse Landing LLC	Test Pit Number: 8
Project: 5114 South Palouse Highway	Project Number: 23010
Equipment: SANY SY26U	Date Excavated: 7/12/2023
Depth to Groundwater: NE	Logged By: BB

Sheet: 8 of 9


USCS DESCRIPTION	ELEVATION (FT)	DEPTH (FT)	LITHOLOGY	SAMPLE INTERVAL	POCKET PEN. (TSF)	% PASSING NO. 200 SIEVE	DRY DENSITY (PCF)	MOISTURE CONTENT (%)	VOID RATIO (%)	ADDITIONAL NOTES
LOESS - Silty Gravel with Sand (GM) Medium Dense, Brown, Dry	2385									

Test pit terminated at 1.5-feet bgs due to bucket refusal on basalt bedrock.

Client: Palouse Landing LLC	Test Pit Number: 9
Project: 5114 South Palouse Highway	Project Number: 23010
Equipment: SANY SY26U	Date Excavated: 7/12/2023
Depth to Groundwater: NE	Logged By: BB

Sheet: 9 of 9

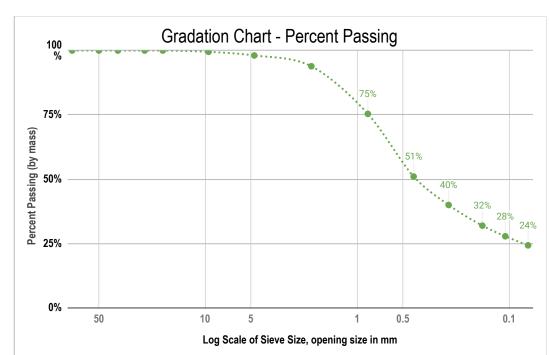
Project: 5114 South Palouse Highway

Test No.: 2

Testing Date: 2/8/2023

Job No: 23010 Sample Location: TP-2 @ 1.5'-2' Lab Technician: Alejandro Recabarren

Method Used: Method A Max Particle Size: #20


Total Sample Mass: 710 grams Minimum Sample Size: #N

Drying Method: Oven Dry

Summary:

•	
3"	100%
2"	100%
1.5"	100%
1"	100%
3/4"	100%
3/8"	100%
#4	98%
#10	94%
#20	75%
#40	51%
#60	40%
#100	32%
#140	28%
#200	24%
Pan	0%

#N/A

Notes:

#N/A

Excluded Material: None.

Additional Results

Soil Classification: Silty sand Percent Moisture: 12.1%

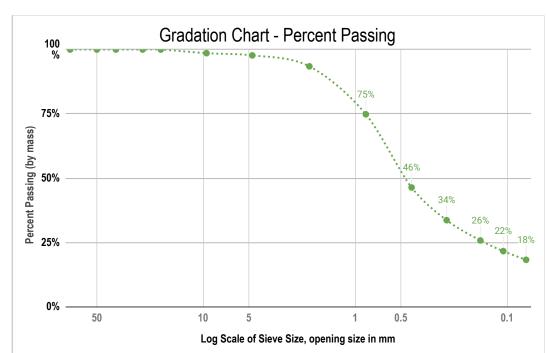
%Gravel: 2% **%Sand**: 74% **%Fines**: 24%

Coefficient of Uniformity, Cu: 18.8 Coefficient of Curvature, Cc: 0.9

Project: 5114 South Palouse Highway Test No.: 3 Testing Date: 2/10/2023

Job No: 23010 Sample Location: TP-2 @ 4'-4.5' Lab Technician: Alejandro Recabarren

Method Used: Method A Max Particle Size: #20


Total Sample Mass: 1,339 grams Minimum Sample Size: #N/A

Drying Method: Oven Dry

Summary:

3"	100%
2"	100%
1.5"	100%
1"	100%
3/4"	100%
3/8"	99%
#4	98%
#10	93%
#20	75%
#40	46%
#60	34%
#100	26%
#140	22%
#200	18%
Pan	0%

Notes:

#N/A

Excluded Material:

None.

Additional Results

Soil Classification: Silty sand Percent Moisture: 13.8%

%Gravel: 2% **%Sand**: 79% **%Fines**: 18%

Coefficient of Uniformity, Cu: 15.3 Coefficient of Curvature, Cc: 1.6

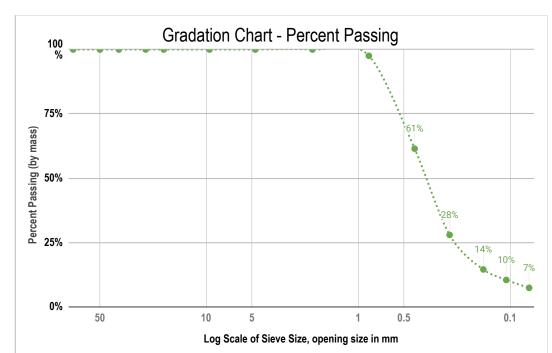
Project: 5114 South Palouse Highway

Test No.: 4

Testing Date: 7/20/2023

Job No: 23010 Sample Location: TP-4 at 2.0' to 2.5' bgs Lab Technician:

Method Used: Method A Max Particle Size: #40


Total Sample Mass: 349 grams Minimum Sample Size: 50 grams

Drying Method: Oven Dry

Summary:

	•
3"	100%
2"	100%
1.5"	100%
1"	100%
3/4"	100%
3/8"	100%
#4	100%
#10	100%
#20	98%
#40	61%
#60	28%
#100	14%
#140	10%
#200	7%
Pan	0%

Notes: Additional Results

Soil Classification: Poorly-graded sand with silt

Excluded Material: None. Percent Moisture: 3.4%

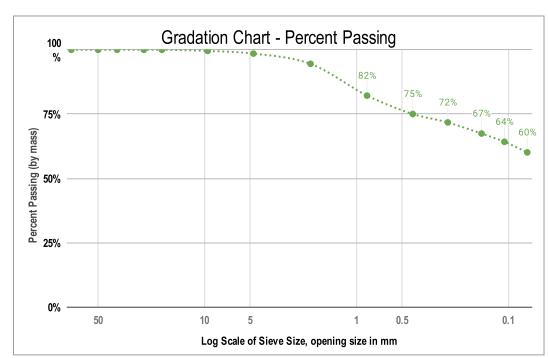
%Gravel: 0% **%Sand**: 93% **%Fines**: 7%

Coefficient of Uniformity, Cu: 4.1
Coefficient of Curvature, Cc: 1.6

Project: 5114 South Palouse Highway Test No.: 3 Testing Date: 7/20/2023

Job No: 23010 Sample Location: TP-8 at 1.5' to 2.0' bgs Lab Technician:

Method Used: Method A Max Particle Size: #20


Total Sample Mass: 889 grams Minimum Sample Size: #N/A

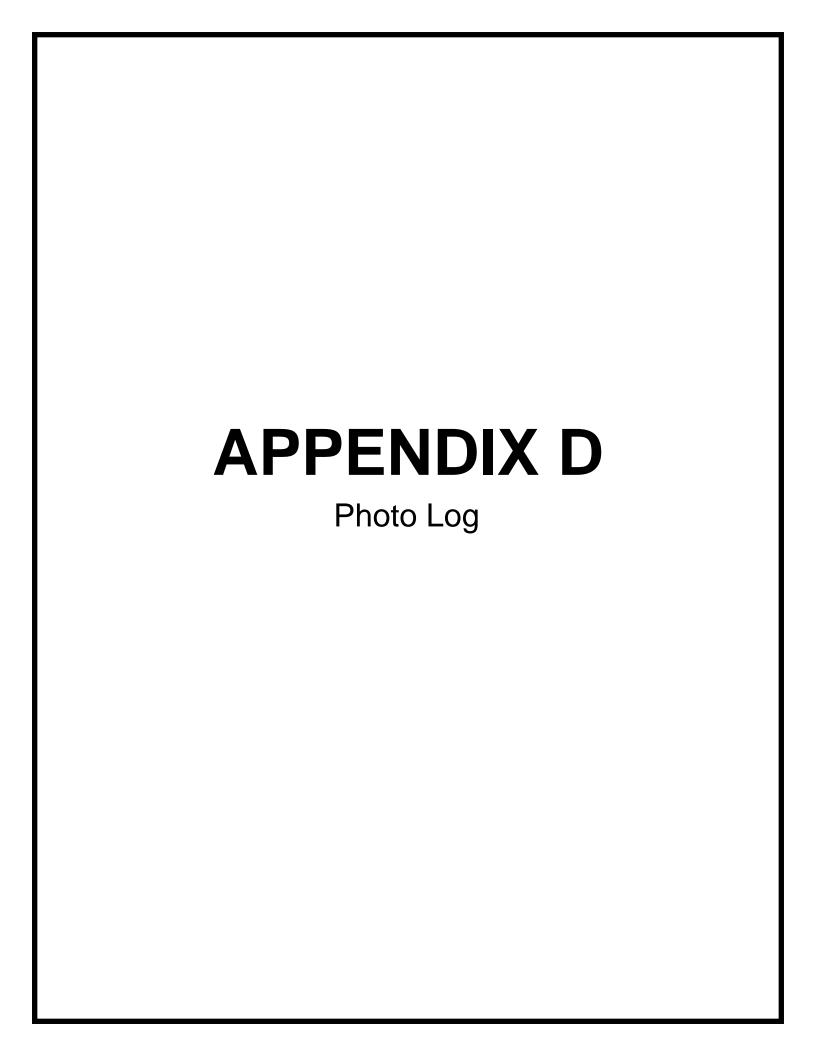
Drying Method: Oven Dry

Summary:

3"	100%
2"	100%
1.5"	100%
1"	100%
3/4"	100%
3/8"	100%
#4	99%
#10	95%
#20	82%
#40	75%
#60	72%
#100	67%
#140	64%
#200	60%
Pan	0%

Notes:

#N/A


Excluded Material: None.

Additional Results

Soil Classification: Sandy silt Percent Moisture: 8.3%

%Gravel: 1% **%Sand:** 38% **%Fines:** 60%

Coefficient of Uniformity, Cu: 6.0 Coefficient of Curvature, Cc: 1.5



3012 N Sullivan Rd, Suite D Spokane Valley, Washington 99216 (509) 213-0400

> July 24, 2023 Project Number: 23010

Will Clark
Palouse Landing LLC
2910 E 57th Avenue 5-122
Spokane, Washington 99223

Subject: Geotechnical Report Addendum (Stormwater Recommendations)

5114 South Palouse Highway 3227 East 53rd Avenue Parcel No: 34032.0704, 34032.9093 Spokane, Washington 99223

Dear Mr. Clark:

This addendum summarizes the recommendation for the stormwater design located at 5114 South Palouse Highway in Spokane, Washington. Liberty Geotech provided the *Geotechnical Engineering Report*, dated April 27, 2023. The geotechnical report provides additional project understanding, geologic, and geotechnical design recommendations that are not included herein.

Lid swale with gravel underground as shown in Civil Plans (C6.6) may be utilized to treat and retain stormwater Single and double-depth drywells are not suitable for the site based on the depth to bedrock. The following recommendations should be used by the civil engineer to the design swale:

- The infiltration swales should be sized for no infiltration of stormwater into the underlying basalt bedrock.
- The swales should be designed with a minimum 4½ feet of separation between the bottom of the swale and the underlying bedrock, as per the *Spokane Regional Stormwater Manual*.
- The proposed residential buildings should be constructed with a vapor barrier beneath the floor slab with a minimum thickness of 0.015 inches. The vapor barrier should be installed beneath the buildings, plumbing and utilities in order to prevent interstitial condensation.

Please contact Liberty Geotech if there are any questions about the recommendations in this addendum.

Respectfully,

Brian Binsfield, P.E. Liberty Geotechnical Engineering, Inc.

