CONCEPT DRAINAGE REPORT

FOR THE

Proposed

ASH PLACE SUBDIVISION

Located in the City of Spokane, Washington

September 2024 WCE W.O. No. 2023-3505

Prepared by:

Whipple Consulting Engineers, Inc. 21 S. Pines Road Spokane Valley, WA 99206 Whipplece.com

This report has been prepared by the staff of WCE under the direction of the undersigned professional engineer whose seal and signature appear hereon.

Ryan M. Andrade, P.E.

GENERAL

The proposed Ash Place Preliminary Plat proposes the development of 20 attached, single-family residential lots (townhomes) within the Residential Single Family (RSF) zone of the City of Spokane. Within the RSF zone, the lots range in size from approximately 1,388 ft² to over 4,191 ft² located on approximately 1.32 acres. The site lies within the City of Spokane, WA, it is inbetween Ash Street & Ash Place, just south of Liberty Avenue. The site lies in the SE ¼ of Section 1, T. 25 N., R 42 E., W.M. and is located within the Critical Aquifer Recharge Area. A vicinity map is attached. The proposed project is anticipated to construct east/west and north/south alleys as a part of development. Lastly, the site has steep slopes at 30% or above for a portion of the site.

PURPOSE and ANALYSIS METHODOLOGY

The purpose of this concept drainage report is to determine the storm drainage facilities that will be required to treat and dispose of the increase in storm water runoff created by development of the vacant lands for the new development. For this project and per Chapter 5 of the SRSM, the rational method of analysis will be used.

A final storm drainage analysis may include an SCS method per Chapter 5, and an NRCS Type IA 24-hour storm may be used for sizing flow control facilities. Because the site has limited infiltration, a Water Budget analysis may also be provided to verify pond sizes proposed as a result of this analysis can meet the evaporation standards should pond bottoms and infiltration become ineffective.

Site stormwater facilities will be designed to treat and dispose of the 2-, 25-, and 100-year storms as required by the SRSM.

As proposed all internal roadways/alleys are proposed to be developed with crowned roadways, catch basins and pipes to a pond/swale located south end of the project site. As proposed all stormwater will be captured and treated in detention pond(s) and released at or below the predeveloped rate. If required for various analyses the Intensity, Duration, and Frequency (IDF) curves from the Spokane, Medical Lake, Reardon, Cheney, and Rockford intensity curves as modified by the Spokane Regional Storm Manual (SRSM) may use bowstring calculations to determine basin flows for reference for the Rational storm. The 2-, 10-, 25-, 50- and 100-year rainfall intensity iso-pluvials from the Spokane Regional Stormwater Manual may be used for both TR-55 and HEC-22 calculations for a HydroCAD stormwater model.

As noted, for this concept report all basins will use the rational method to determine peak discharge and runoff volumes.

TOPOGRAPHY

The site is considered to have a "hilly" terrain site with existing slopes on site ranging averaging between 0% and over 30% west to east with varying levels north and south. As shown on the preliminary plat map, the proposed road system will generally follow contours, and the roads will be graded north/south & east/west to maintain storm water flows to generally follow the lay of the land.

SOILS

Geologic maps indicate the soils in this area consist primarily of loess with an influence of volcanic ash over residuum and/or colluvium derived from basalt. According to the Natural Resources Conservation Service (NRCS) Soil Survey of Spokane County, Washington, the site soils are classified as Northstar-Rock outcrop-Rockly complex (3117) and Speigle-Rock outcrop complex (2053).

The west half of the project site is mapped as Northstar-Rock outcrop-Rockly complex. The Northstar-Rock outcrop-Rockly soil profile is described as extremely cobbly ashy loam to very gravelly ashy loam to extremely gravelly loam to bedrock. The Speigle-Rock outcrop complex, located in the east half of the project is described as cobbly ashy loam to very gravelly ashy loam to very cobbly loam to extremely gravelly loam to extremely cobbly sandy loam. Both soil types are categorized by NRCS as well-drained and are derived from loess mixed & with an influence of volcanic ash over residuum and/or colluvium derived from basalt.

Based on our field observations and on our previous geotechnical experience in the vicinity of the site, the on-site soils appear to be consistent with the soil mapping.

Hydrologic Soil Group = B & C

The stormwater runoff may be treated within bio-detention swales/ponds and released at 0.05 cfs, well below the pre-developed rate. Recommended design rates shall be based on the onsite testing and include a factor of safety of 2.5. All stormwater management features shall be designed in accordance with the SRSM.

Swales/ponds constructed in natural soils within the proposed project should be sized using equation 6-1b and 6-1d in the SRSM based on the permeability testing results.

Equations 6-1b and 6-1d

77 4047 (7 152	
• $V = 1815AP^{1.53}$ (6-1b)	a segre de terresta de la circa de la composição de la composição de la composição de la composição de la comp
• $V = 1815 A$ (6-1d)	
:	

For this analysis, sizing will be per the Rational Method for Detention Ponds with release of excess stormwater into the City stormwater system downstream at 0.05 cfs, well below the predeveloped rate. A final drainage report may utilize a CN/SCS method to maintain the discharge at or below the development condition, or as allowed by the SRSM.

DRAINAGE NARRATIVE

BASIN SUMMARY - Pre-Developed

The existing site is 1.32 Acres +/- in size. The drainage from this site is generally from west to east, Pre Basin-A, includes the whole project site. The basin has varying slopes, from shallow to steep (over 30%) with no observed drainages other than sheet flow operating as a shallow concentrated type of flow that is present on site and generally as discussed in the SRSM and the SCS manual. Most, if not all, of Pre Basin-A flows offsite over the existing sidewalk and down the curb & gutter and into the City existing stormwater system to this day.

Table 1. Pre-Developed Basin Summary Table

Pre		Area	(sf)			R	M Rate (cfs)	
Basin	Imp	Pervious	Offsite	Total	2-yr	10-yr	25-yr	50-yr	100-yr
A	0	57,590	0	57,590	1.12	2.08	2.63	3.05	3.48

BASIN SUMMARY – Post-Developed Narrative

The post-developed site is separated and designated into 3 basins (Basins 1 through 3) based upon their anticipated storage and discharge locations, as shown on the attached basin map. The following are narratives on the various basins and where and how the water is treated and discharged.

POST Basin 1

This basin is located through the center of the project and includes the two alleys & front half of the proposed buildings and collects and consolidates drainage from the developed condition. For Post Basin 1 the following summarizes the intent of the overall design.

- All sheetflow runoffs will be conveyed overland to street gutters & catch basins & pipe and enter a bio-detention and treatment swale, Pond 1.
- All stormwater in Pond 1 will be treated by 18-inches of treatment soil and then discharged to the existing City municipal stormwater system at a rate of 0.05 cfs through the use of a perforated drain pipe (underneath the pond bottom) and catch basin with an orifice tee inside the catch basin metering the outflow at the specified rate.
- For this analysis, it was presumed that all generated stormwaters will be maintained on site, with overflow to the existing City stormwater system.
- A summary section follows the basin narratives.

POST Basin 2

This basin is located through the eastern half of the development and includes the majority of the unimproved/pervious, hilly portion of the development. The basin includes the back half of the proposed buildings along the east side of the north/south alley. For Post Basin 2 the following summarizes the intent of the overall design.

- All sheetflow runoffs will be conveyed downstream, overland to existing Ash Street and into the existing City municipal stormwater system.
- For this analysis, offsite flows in the post-developed condition will be substantially less than that of the pre-developed condition. For example, in the 25- & 100-year pre-developed condition the offsite flows are approximately 2.08 & 3.48 cfs respectively. The post-development offsite flows for this Basin 2 are approximately 0.94 & 1.57 cfs respectively, therefore, generating a much lesser impact downstream.
- A summary section follows the basin narratives.

POST Basin 3

This basin is located through the west side of the development and includes a portion of the unimproved/pervious, flatter portion of the development. The basin includes the back half of the proposed buildings along the west side of the north/south alley. For Post Basin 3 the following summarizes the intent of the overall design.

- All sheetflow runoffs will be conveyed downstream, overland to existing Ash Place and into the existing City stormwater system.
- For this analysis, it was presumed that all generated stormwaters will be maintained on site within the backyards & landscaped areas of each lot, with emergency overflows to the existing City stormwater system only in the frozen-ground condition.
- A summary section follows the basin narratives.

PGIS CHECK

While this project is intended to be a bioretention pond design, the intent as described, due to shallow bedrock/refusal & poor infiltration rates due to said refusal on the project site, is NOT to install drywells and to use gravel galleries underneath the swale.

The Final drainage report is anticipated to include flooded width calculations, all flooded widths for the design storms, provide appropriate non flooded widths for access and fire. Because the pond on this project has some minor infiltration capacity and as this project is in the moderate susceptible part of CARA, Table 2 below lists the pond requirements by basin, a weighted 'C" calculation is in the appendix and summarized below.

Table No. 2 - Weighted C and Pond and Basin Summary

Post Basin	Total Area (sf)	Impervious Area (sf)	Pervious Area (sf)	Weighted 'C'	Required Pond Vol. (cf)	Provided Pond Vol. (cf)
1	23,880	19,285	4,595	0.76	804	914
2	24,205	3,600	20,605	0.64	0	0
3	9,505	3,600	5,905	0.43	0	0

As this is a concept report, the provided pond area as described within the table is an estimate of the treatment volume that may be provided in the designated areas. As can be seen, overall, the project provides or is anticipated to provide the required treatment volume per the SRSM.

POND DESIGN

In Post Basin 1, the increase in stormwater and PGIS on the various roads/alleys will be treated/stored within the onsite bio-detention pond. In the case that stormwater overflows the onsite pond, the stormwater will discharge offsite into the existing City municipal stormwater system as allowed per City guidelines by design deviation request.

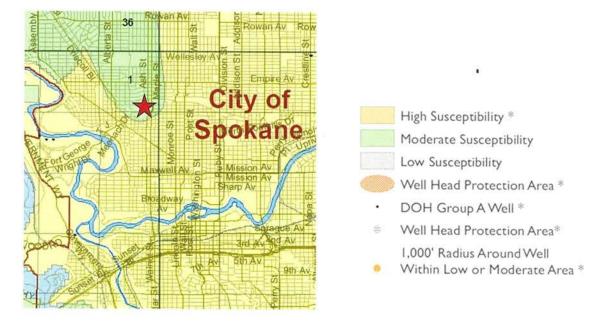
In order to ensure that any stormwater overflowing the onsite pond will be released at the allotted rate of 0.05 cfs, the stormwater will be equipped with a properly sized overflow structure (an orifice tee within a catch basin). The overflow structure requires that the stormwater entering the structure to crest the rim of the structure and filling the structure for release via an orifice. The orifice will be size appropriate to allow stormwater to be released at the maximum discharge rate of 0.05 cfs.

Though the project site is not anticipated to encounter any stormwater issues, in the event that there are heavy rain periods, the ability to discharge offsite into the existing City municipal stormwater system provides assurance that the project site will not inundate and negatively impact surrounding properties with excess stormwater.

Table No. 3 - Pond Volume Summary

	Pon	d Volume Sui	nmary
Basin/ Pond	100-YR Required Storage Volume (cf)	Provided Storage Volume (cf)	Overflow Basin
1	1,472	1,495	Ex. City System

As shown in Table 3, Pond 1 is anticipated to hold the required volume per the rational method for the 100-year storm event. What is not included is the anticipated discharge via the pond/swale bottom.


CONCLUSION

This report demonstrates that per the rational method that the anticipated increase in stormwater from the development can capture, detain, treat, and discharge the proposed storm water design for this system to meet SRSM requirements.

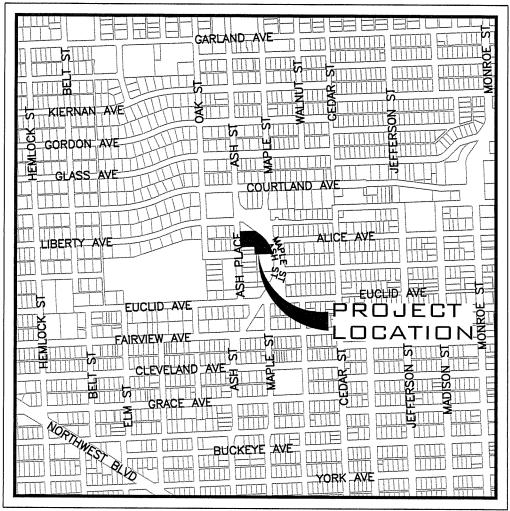
Per Page 3-6 of the SRSM, there are additional items that need to be addressed; these areas are as follow:

Critical Area Discussion:

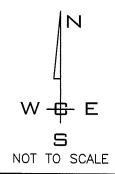
- There are no DNR streams on site
- The soil types are Type B and should not be considered "erodible soils",
- There are no identified susceptible species present on site, please refer to the SEPA Checklist prepared for this project, not attached, see City of Spokane Planning.
- The site is in the Critical Aquifer Recharge Area and moderate susceptibility area

Perpetual Maintenance of Facilities:

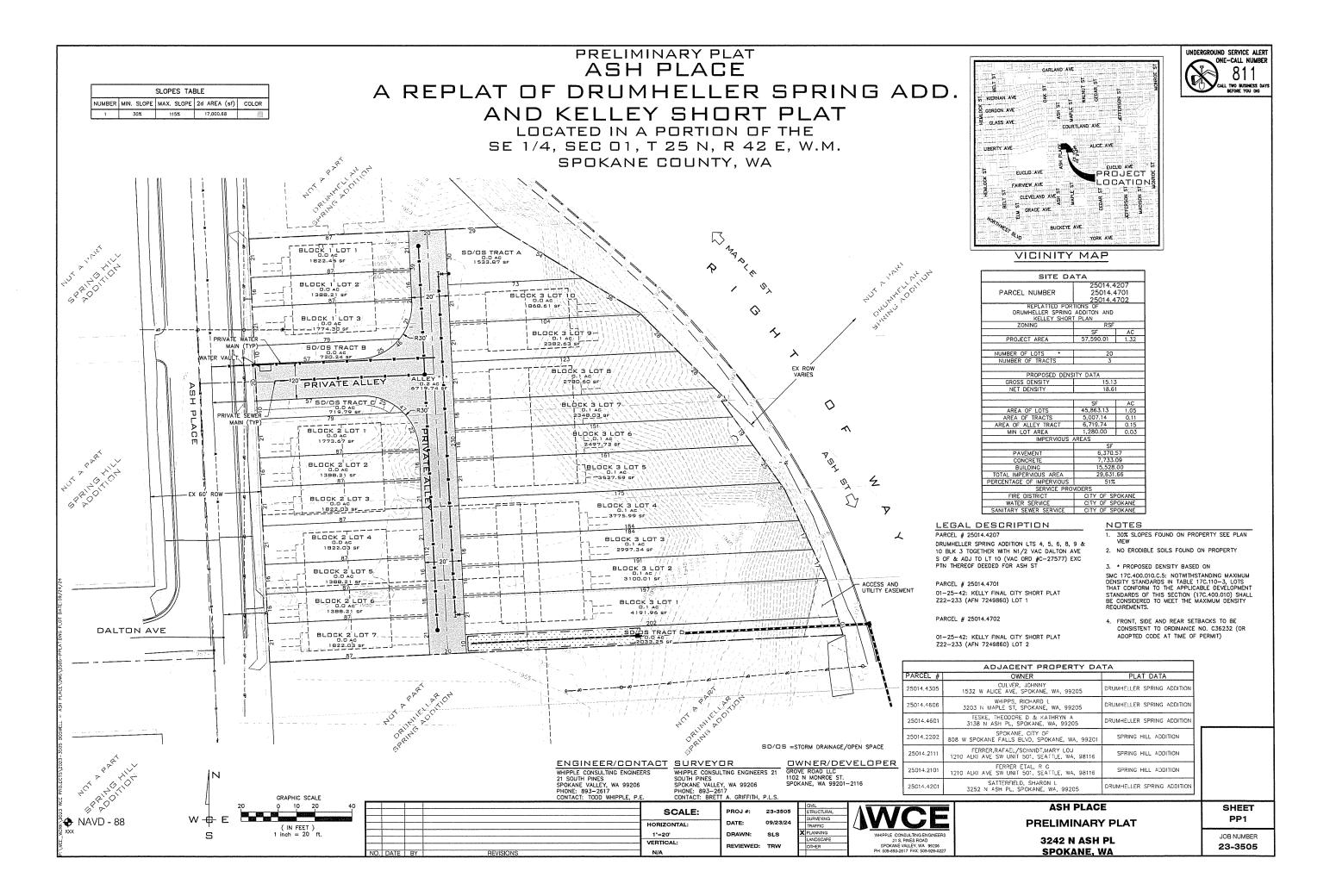
The proposed storm drainage system will be a system of street flow and catch basins & pipes within public or private roads and as such will be owned by the Jurisdiction. The pond will be maintained in a Tract within the plat and will be maintained by the project HOA.

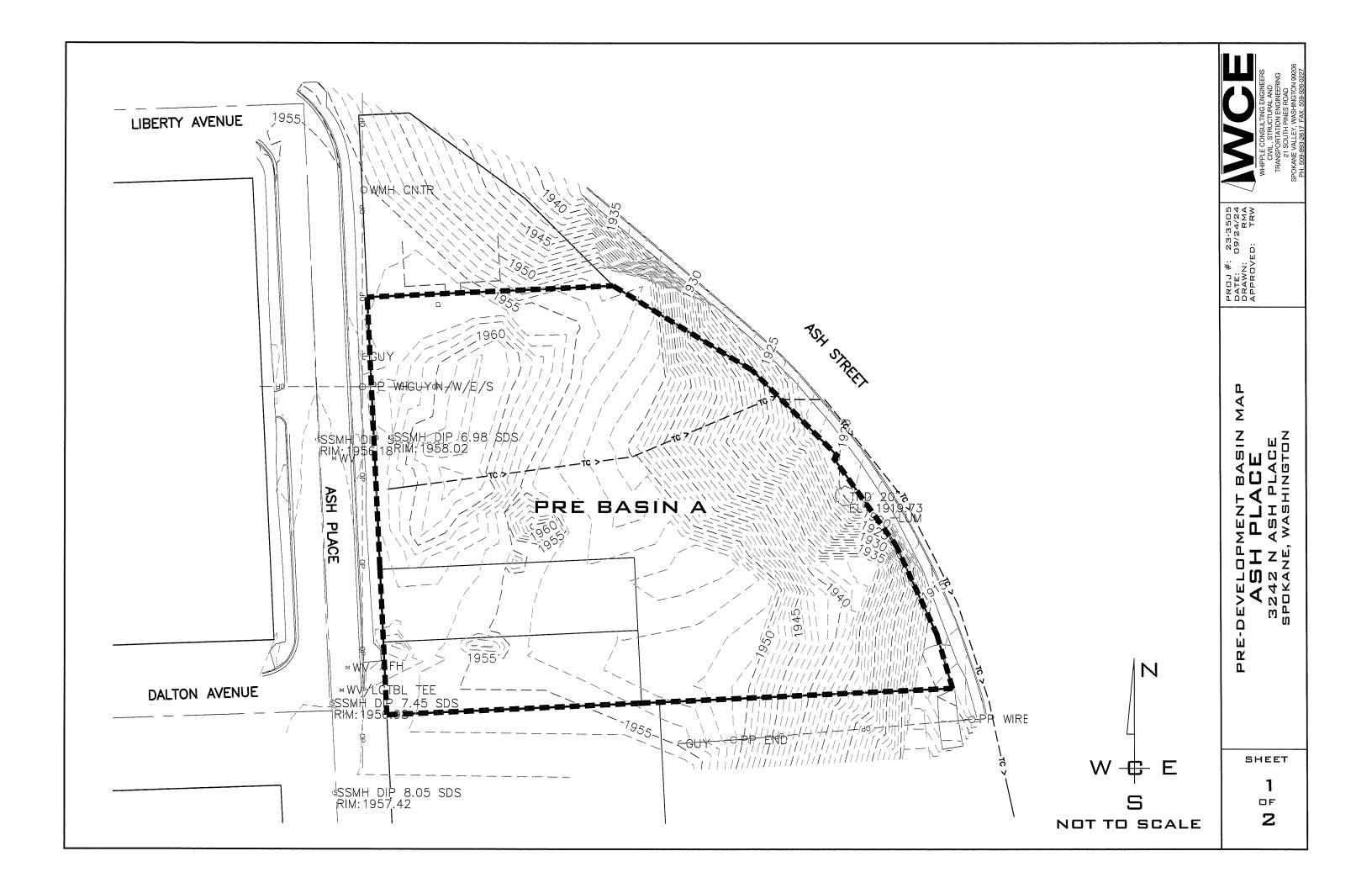

Offsite Easements:

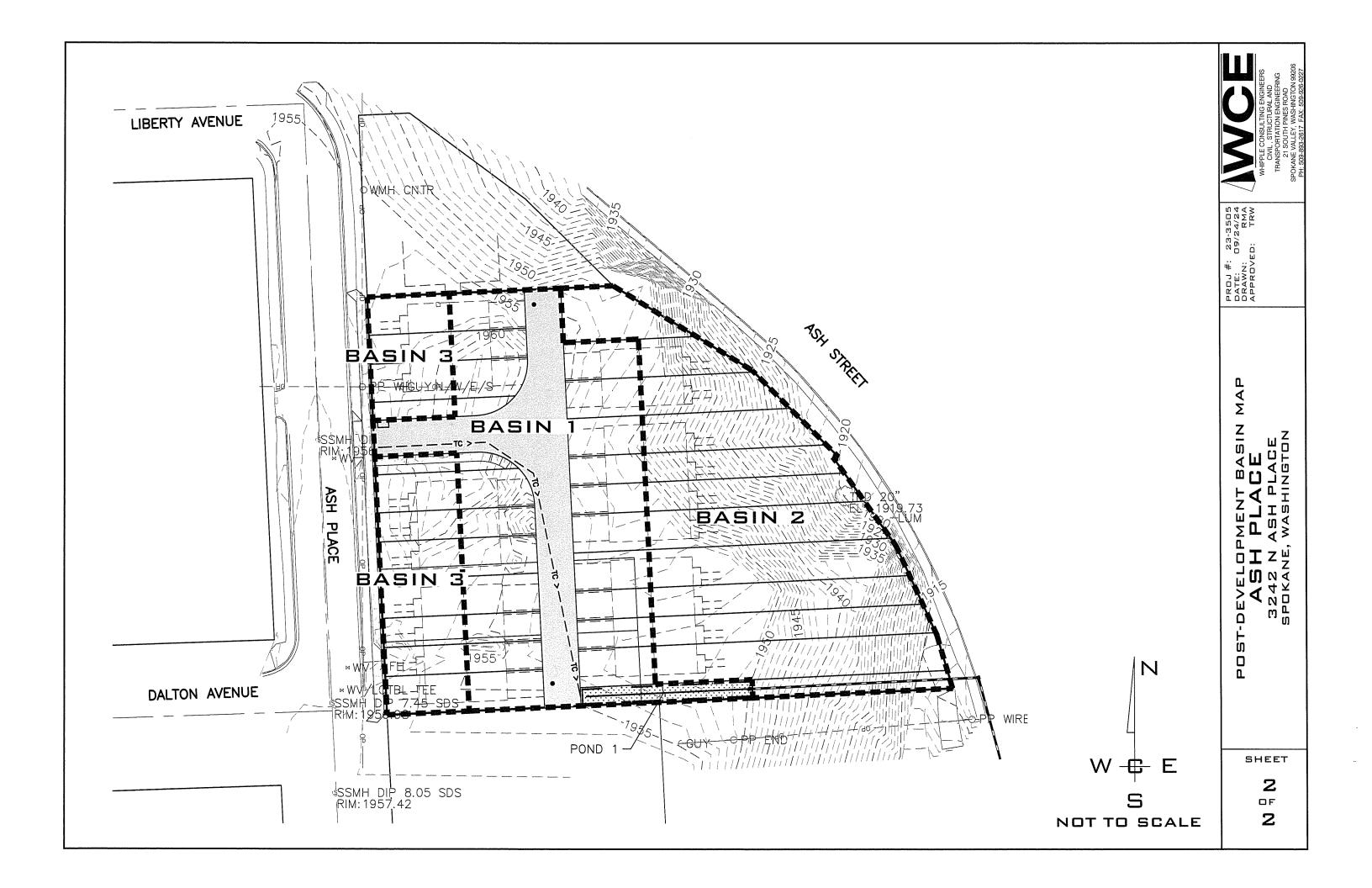
None are required at this time, if any are required these will be pursued at the time of final design.


Regional Facilities:		
This project is not a part of any	City of Spokane regional sys	stem.
Whipple Consulting Engineers	Page 8 of 9	Ash Place – Concept Drainage Report

APPENDIX


- 1. VICINITY MAP
- 2. ASH PLACE PRELIMNINARY PLAT
- 3. PRE AND POST BASIN MAPS
- 4. BASIN AND WEIGHTED 'C' SPREADSHEET
- 5. POND VOLUME CALC SHEET
- 6. BOWSTRINGS
- 7. GEOTECHNICAL REPORT




VICINITY MAP

PROJ #: 23-3505 DATE: 09/24/24 DRAWN: RMA APPROVED: TRW	CONCEPT DRAINAGE REPORT ASH PLACE 3242 N ASH PLACE SPOKANE, WASHINGTON	WHIPPLE CONSULTING ENGINEERS 21 SOUTH PINES ROAD
FIGURE 1	VICINITY MAP	SPOKANE VALLEY, WASHINGTON 99206 PH: 509-893-2617 FAX: 509-926-0227

Whipple Consulting Enginee	ngineers									
Basin Calculation Works	ksheet		dwl	6.0	Intensities from	Intensities from SRSM eqn. 5-13, per Table 5-7, Assumes Tc = 5 min	able 5-7, Assumes	Tc = 5 min		
			Per	0.15	I(2 yr) =	1.418 inches	I (10 yr) =	2.619 inches	NOTE:	
WCE 1	No. Project Nam	Name	Earth	0.6 Table 5-5	I(25 yr) =	3.319 inches	I(50 yr)=	3.843 inches		
9/24/2024 23-3505		ice			I(100 yr) =	4.381 inches				
RMA										

SPOKANEC	JUNIY - SH	SPOKANE COUNTY - SRSM - GRASSED PERCOLATION METH) PERCOL,	ATION M	ETHOD					1815 A	A		Ö	O=CIA (cfs)	(SJ:	
Basin	Total	Access/Parking Sidewalk Adj. SW Buildings	Sidewalk	Adj. SW	Buildings	Total	Total	Weighted	PGIS	Pond	Pond	c	10	20	01	9
	sf	/Street (sf)	sf	sf	Js	Impervious	Pervious	[] []	sf	Area (sf)	Vol (cf)	Z yr	10 yr	75 yr	10 yr 25 yr 50 yr 100 yr	100 y
PRE A	57,590	0	0	0	0	0	57,590	09.0	0	0	0	1.12	2.08	2.63	3.05	3.48
Pre Total	57,590	0	0	0	0	0	57,590	09.0	0	0	0	1.12	2.08	2.63	3.05	3.48
Post Onsite Flow	WO														THE STATE OF	
POST 1	23,880	6,485	0	5,600	7,200	19,285	4,595	0.76	19,285	1,607	804	0.59	1.08	1.37	1.59	1.81
POST 2	24,205	0	0	0	3,600	3,600	20,605	0.64	0	0	0	0.51	0.94	1.19	1.38	1.57
POST 3	9,505	0	0	0	3,600	3,600	5,905	0.43	0	0	0	0.13	0.25	0.31	0.36	
TOTAL	57,590	6,485	0	2,600	14,400	26,485	31,105	0.49	19,285	1,607	804	0.93	1.71	2.17	2.51	2.87

		100 yr	3.48	3.48		1.81	1.57	0.41	2.87
(0)	0.0	oo yr	3.05	3.05		1.59	1.38	0.36	2.51
(615)	30	7 C2	2.63	2.63		1.37	1.19	0.31	2.17
5	10	10 yr 23 yr	2.08	2.08		1.08	0.94	0.25	1.71
	,	2 yr	1.12	1.12		0.59	0.51	0.13	0.93
	Pond	Vol (cf)	0	0		804	0	0	804
V 6101	Pond	Area (sf)	0	0		1,607	0	0	1,607
	PGIS	sf	0	0		19,285	0	0	19,285
	Weighted	"C"	09.0	09'0	No. of the last of	92.0	0.64	0.43	0.49
	Total	Pervious	57,590	57,590		4,595	20,605	5,905	31,105
	Total	Impervious	0	0		19,285	3,600	3,600	26,485
COLLEGE	Buildings	sf	0	0		7,200	3,600	3,600	14,400
	Adj. SW	sf	0	0		5,600	0	0	2,600
The same of	Sidewalk	sf	0	0		0	0	0	0
THE CHARGE THE	Access/Parking	/Street (sf)	0	0		6,485	0	0	6,485
	Total	sf	57,590	57,590	V	23,880	24,205	9,505	27,590
	Basin		PRE A	Pre Total	Post Onsite Flow	POST 1	POST 2	POST 3	TOTAL

WHIPPLE CONSULTING ENGINEERS POND VOLUME CALC SHEET

Date: 9/24/2024

Project: 23-3505 Designer: RMA

Ash Place

Storage	Total Volume to Inlet	cf 1.495						1,495
	0)	cf 370						r
	Conic Side Volume Slope to Inlet Volu	cf 1.125						1
Treatment	Total Conic Side Volume to Volume Slope to Rim to Inlet Volume	cf 914						914
	Side Slope Volume	ct 164						1
	Conic Side Volume Slope to Rim Volumo	ct) 750	100					1
	Pond Inlet Elevation	(avg) 1001.50						1
	Pond Pond Drywell Inlet Elevation Elevat	t Drywell (avg) 1000.00 1001.00 1001.50						1
	m tion	at Drywell 1000.00						91 0
	Side	1f 27.39						(I)
	Bottom Treatment Squared Pond Area Area Side Botto (w/ Side Eleva	(sadols)						096
	Bottom Area	st 750						750
	Ponds/ Swales	1						
	Basins	-						Totals

PEAK FLOW CALCULATION	VOITA	PROJECT	CT:	BOW	BOWSTRING METHOD	ETHOD	PRO	PROJECT: Ash Place	sh Place		Rail	Rainfall Intensity Coefficients for Spokane	y Coeffic	cients for	r Spokai	96		
25-Year Design Storm	Storm Ash Place	lace		DETE	DETENTION BASIN	NIS		BASIN: 1			take	taken from Table 5-7 SRSM	le 5-7 SI	RSM	9.			
				DESIGN	NS		DESIG	DESIGNER: RMA	MA		M ₂₅ =	= 9.09	0		Flow	Flow (weighted c)	() p	
	BASIN:	_						DATE: 24	24-Sep-24		N ₂₅ =	= 0.626	(C)		Qwc=		1.37 cfs	
					A1252 11 H 10 A	000000000000000000000000000000000000000					B				Flow	(time of c	Flow (time of concentration)	(noi
lot. Area Imp. Area	23,880 SF 19,285 SF	0.55 Acres C= 0.0	es 0.9	Time	Time Increment (min) Time of Conc. (min)	(min) Jin)	5.00								Otc=	73	1.37 cfs	
Perv. Area Wt. C =	4,595 SF 0.76 PGIS	C= 0.15 PGIS Area = 19.285	0.15	Outflo	Outflow (cfs)		0.05				Time (min)	F	1000	O			5	ø.
				Area (Area (acres)	:	0.55				385	5	(111/1111)	(013)) (cu ii)	(cu ii)	(cu it)	1
WCE Applicable	WCE Applicable Travel Time Ground Cover Coefficients	Cover Coe	fficients	Imper	Impervious Area (sq ft)	(sd ft)	19,285				395	5 23700	0.21	0.09	9 2058	3 1185	873	
Per Table 5-6 SRSM				'C' Factor	ctor		0.76				405		0.21	0.09	9 2110		895	
Type of Cover	K (ff/min)	TI CI		Area * C	Ο.		0.414				415		0.20					
Short Pasture	420			PGIS Area	Area		19,285				425		0.20					
Small Roadside Ditch/ Grass				Time	Time Inc.	Intens	O Devel	Volla	Vol Out Storage	orage	445	26700	9.0	0.08	2048	1305	760	
Paved Area (use for parking lots)				(min)	(sec)	(in/hr)			(cu ft) ((cu ft)	455		0.18					
Gutter - 4 inches deep				5.00	300	3.32		1		538	465		0.18		630			
Gutter - 6 inches deep											475	5 28500	0.17	0.07	1999	9 1425	574	
Pipe - 12-inch PVC/DI				15	006	1.67	69.0	693	45	648	485		0.17		2041	1455		
Pipe - 15/18-inch PVC/DI	IQ			52	1500	1.21	0.50	804	75	729	495		0.16		30	3 (2)		
Pipe - 24-inch PVC/DI	DI 4700			35	2100	0.98	0.41	896	105	791	505	30300	0.16		1999			
Desertes				2 1	0072	0,0	0.00	4 5	000	000	0		0.13					
es				32	3300	0.74	0.31	1043	165	878	525		0.15					
	Offsite also applicable for Pre-Developed Tc	e-Developed 1	0	65	3900	0.67	0.28	1105	195	910	535		0.14			exan R		
rengin	0000			0, 10	4500	0.61	0.25	1161	225	936	545		0.14					
Slone (fl/fl)	0.0400 be sure this is decimal equivalent slone 0.0000	l equivalent sl	0 0000	6 8	2100	0.30	0.23	1263	285	929	222	33000	0.13	0.05	1012	1665	116	
1	0.00 Minutes		20000	105	6300	0.20	0.20	1309	315	994	575		0.0					
		_		115	0069	0.47	0.19	1352		1007	585		0.12			*		
Reach 2 Fini	Finished Lot from House to Street	eet		125	7500	0.44	0.18			1019	595		0.11			30.00	*	
Length	0.00			135	8100	0.42	0.17			1028	605	36300	0.11		1640	1815		
+				145	8700	0.40	0.17			1035	615		0.10					
	0.0300 be sure this is decimal equivalent slope 0.0000	l equivalent sl	ope 0.0000	155	9300	0.39	0.16			1041	625		0.10			3.55		
Tavel Time	0.00 Minutes			175	10500	0.37	0.10	1541	495	1046	635	38100	0.09	0.04	1404	1905	-501	
Reach 3 Gut	Gutter Flow to Inlet/Catch Basin	-		185	11100	0.35	0.0			1052	655		0.0					
	300.00			195	11700	0.33	0.14			1053	665		0.08					
	2400.00			205	12300	0.32	0.13		#E00	1053 <==			0.07					
Slope (fl/fl) 0.	0.0200 be sure this is decimal equivalent slope 0.0000	d equivalent sle	ope 0.0000	215	12900	0.32	0.13			1052	685		0.07					
Travel Time	0.88 Minutes			225	13500	0.31	0.13			1051	695		0.06					
Reach 4 Pine	Pine Flow Pine Reach One (only need one if no Dia change)	r need one if no	Dia change)	245	14700	0.30	0.12	1781	735	1046	715	42300	0.00	0.02	1031	2115	-1084	
	130.00		0	255	15300	0.28	0.12			1042	725		0.05					
		ш		265	15900	0.28	0.11	1833	795 1	1038	735		0.04		709	2205		
Slope (fl/ft) 0.	0.0300 Average Slope for total pipe run	al pipe run		275	16500	0.27	0.11	1858	825 1	1033	745	5 44700	0.04	0.02	719	2235	-1516	
Travel Time	0.25 Minutes			285	17100	0.26	0.11		**************************************	1027								
				295	17700	0.26	0.11			1021	"181	"1815A" TREATMENT REQUIREMENTS	MENT	REQUIRE	EMENTS	. 2:		3
Length	Pipe Flow Add additional pipe reacheds for other Dia	eacheds for ou	ier Dia	315	18300	0.25	0.10	1950	945	51015		Minimum 1815A Volume Required Provided Treatment Volume - Min	Treatme	volume	Require	o	808	804 Cu ft
	3900.00 15/18-inch Pipe			325	19500	0.24	0.10			1001	STO	STORAGE REO - 25 YEAR DESIGN STORM	- 25 Y	FAR DE	SIGN ST	ORM		
Slope (fl/fl) 0.0	0.0200 Average Slope for total pipe run	al pipe run		335	20100	0.24	0.10	817		993	157	Maximum Storage Required by Bowstring	Storage	e Require	ed by Bo	wstring	1,053	1.053 cu ft
	0.00 Minutes			345	20700	0.23				985		Provided Pond Storage Volume to Inlet - Min.	Pond St	orage Vo	olume to	Inlet - Mir		1,495 cu ft
				355	21300	0.23		200 E		963		Provided Drywell/Gallery Storage Volume	Drywell/	Gallery S	Storage \	/olume		0 cuft
Sum of Tc	1.13 Minutes			365	21900	0.22				950		Total Provided Volume	vided V	olume			1,495	1,495 cu ft
				375	22500	0.22				923								
Tc for Analysis 5.00 Minutes Whipple Consulting Engineers	5.00 Minutes 3 Engineers			385	23100	0.22	60.0	2102 1	1155	947								

PEAK FLOW CALCULATION 100-Year Design Storm	V CALCUI	LATION	PROJECT:	CT:	BOWS	BOWSTRING METHOD	THOD	PRO	DJECT:	PROJECT: Ash Place	Φ
					DESIGN	DESIGN	Z S	DESI	DESIGNER: RMA	RMA	
		BASIN	_						DATE	DATE: 24-Sep-24	4
Tot. Area		23,880 SF	0.55 Acres	se	Time In	Time Increment (min)	min)	10			
Imp. Area Perv. Area		19,285 SF 4 595 SF	5 5	0.9	Time of Con	Time of Conc. (min)	in)	5.00			
Wt. C =		5		19,285	Design	Design Year Flow	,	50			
WCE Applies	able Trave	WCE Applicable Travel Time Ground Cover Coefficients	nd Cover Co	efficients	Area (acres)	Area (acres) Impervious Area (sd ft)	(an ff)	19285			
Per Table 5-6 SRSM					'C' Factor	tor	6. 60	0.76			
Type of Cover		K (fl/min)	(ii)		Area * C	O		0.414			
Short Pasture	pun	420			PGIS Area	rea		19,285			
Small Roadside Ditch/ Grass	Ditch/ Grass				Time	Time Inc.	Intens.	O Devel	Vol.In	Vol Out	Vol.Out Storage
Paved Area (use for parking lots)	for parking	lots) 1200				(sec)	(in/hr)	(cfs)	(cn ft)	(cn ft)	(cn ft)
Gutter - 4 inches deep	deep s	1500			2.00	300	4.38	1.81	730	15	715
Gutter - 6 inches deep	deep	3000			, r	000	218	000	202	72	852
Pine - 15/18-inch PVC/DI	PVC/DI	3900			25	1500	1.56	0.90	1033	75	958
Pipe - 24-inch PVC/DI	VC/DI	4700			35	2100	1.25	0.52	1143	105	1038
					45	2700	1.07	0.44	1238	135	1103
Reaches					22	3300	0.94	0.39	1321	165	1156
Reach 1		also applicable for	Pre-Developed Tc	Tc	65	3900	0.84	0.35	1396	195	1201
Length	0.00				75	4500	0.77	0.32	1464	225	1239
K	420.00	1	-	Jone 0 0000	82	5700	17.0	0.29	152/	255	12/2
Stope (IVII)	0 00 V	0.00 Minutes	mai equivalent	stope o noon	105	9700	0.00	0.26	1640	315	1325
Havel Hills	2000	cammuca munica m			115	0069	0.58	0.24	1692	345	1347
Reach 2	Finished Lo	inished Lot from House to Street	Street		125	7500	0.55	0.23	1741	375	1366
Length	00.0				135	8100	0.53	0.22	1788	405	1383
K					145	8700	0.50	0.21	1833	435	1398
Slope (ft/ft)	0.0300 b	be sure this is decimal equivalent slope 0.0000	mal equivalent	slope 0.0000	155	9300	0.48	0.20	1875	465	1410
Travel Time	0.00 Minutes	Inutes			175	10500	0.40	0.0	1956	525	1421
Reach 3	Gutter Flow	Gutter Flow to Inlet/Catch Basin	asin		185	11100	0.43	0.18	1994	555	1439
Length	300.00				195	11700	0.42	0.17	2031	585	1446
К	2400.00				205	12300	0.40	0.17	2067	615	1452
Slope (ft/ft)	0.0200 b	0200 be sure this is decimal equivalent slope 0.0000	mal equivalent	slope 0.0000	215	12900	0.39	0.16	2101	645	1456
					235	14100	0.37	0.15	2168	705	1463
Reach 4		Pipe Reach One (only need one if no Dia change)	only need one if	no Dia change)	245	14700	0.36	0.15	2200	735	1465
Length					255	15300	0.35	0.14	2231	765	1466
Slone (A/A)	0.0300	0.0300 Average Slone for total nine run	num total nine nun		275	16500	0.33	0.14	2290	825	1465
Travel Time	0.25 N	Minutes	mir adid mini		285	17100	0.33	0.13	2319	855	1464
					295	17700	0.32	0.13	2348	885	1463
Reach 5	Pipe Flow A	Add additional pipe reacheds		for other Dia	305	18300	0.31	0.13	2375	915	1460
Length					315	18900	0.31	0.13	2402	945	1457
К	3900.00	15/18-inch Pipe			325	19500	0.30	0.12	2429	975	1454
Slope (fl/ft)	0.0200 A	0.0200 Average Slope for total pipe run	total pipe run		335	20100	0.29	0.12	2455	1005	1450
Travel Time	0.00 M	Minutes			355	21300	0.28	0.12	2512	1065	1447
Sum of Tc	1.13 M	Minutes			365	21900	0.28	0.12	2532	1095	1437
					375	22500	0.27	0.11	2559	1125	1434
To for Analysis 5.00 Minutes	5.00 N	finutes			385	23100	0.27	0.11	2627	1155	1472 <
Valuable Assessment	The same of the same	C C C									

1.81 cfs

Flow (weighted c) Qwc=

taken from Table 5-7 SRSM M₁₀₀ = 12.33 N₁₀₀ = 0.643

Rainfall Intensity Coefficients for Spokane

1,495 cu π			аше	ided Vol	i otal Provided Volume	
0	nme	age Vo	allery Stor	rywell/G	Provided Drywell/Gallery Storage Volume	
	let - Min.	ne to In	age Volun	ond Stor	Provided Pond Storage Volume to Inlet -	
1,472 cuft	string	by Bows	Required b	Storage F	Maximum Storage Required by Bowstring	-
914 cu ft	NRM	Min. SN STC	AR DESIG	- 100 YE	Provided Treatment Volume - Min. STORAGE REQ 100 YEAR DESIGN STORM	STOR
		quired	olume Re	1815A" \	Minimum "1815A" Volume Required	-
		STNE	QUIREME	IENT RE	"1815A" TREATMENT REQUIREMENTS	"1815A
-503	2235	1732	0.04	60.0	44700	745
-496	2205	1709	0.04	60.0	44100	735
-309	2175	1866	0.04	0.10	43500	725
-304	2145	1841	0.00	0.10	42900	715
-124	2115	1991	0.05	0.11	42300	705
122	2022	1963	0.05		41700	000
9 u	2025	2074	0.05	21.0	44400	6/5
215	1995	2210	0.06	-	39900	665
211	1965	2176	0.06	0.13	39300	655
369	1935	2304	90.0	0.14	38700	645
363	1905	2268	90.0	0.14	38100	635
514	1875	2389	90.0	0.15	37500	625
505	1845	2350	90.0	0.15	36900	615
648	1815	2463	0.07	0.16	36300	605
638	1785	2423	0.07	0.16	35700	595
773	1755	2528	0.07	0.17	35100	585
760	1725	2485	0.07	0.17	34500	575
887	1695	2587	0.08	0.18	33900	565
288	000	1707	0.08	0.0	32700	040
974	1605	2579	0.08	0.19	32100	535
1087	1575	2662	0.08	0.20	31500	525
1066	1545	2611	0.08	0.20	30900	515
1172	1515	2687	60.0	0.21	30300	202
1149	1485	2634	0.09	0.21	29700	495
1247	1455	2702	0.09	0.22	29100	485
1221	1425	2646	0.09	0.22	28500	475
1312	1395	2707	0.10	0 23	27900	465
1284	1365	2649	0.10	0.23	27300	455
1367	1335	2702	0.0	0.24	26700	450
1412	12/5	2687	0.10	0.25	25500	425
1379	1245	2624	0.10	0.25	24900	415
1447	1215	2662	0.11	0.26	24300	405
1412	1185	2597	0.11	0.26	23700	395
(10 00)	(100)	0100	(613)		(226)	385
"	Vol.Out	Vol.In	U Devel	intens.	I Ime Inc.	Ime (min)
	100	4	0	actal	Timo	Limo
cfs	1.81	Otc=				
Flow (time of concentration)	ne of con	300				
200	1.01				2	001

To for Analysis 5.00 Minutes Whipple Consulting Engineers