District: 2
 Neighborhood:
 Project Extent:
 Manito-Cannon Hill
 $25^{\text {th }}$ Avenue from Bernard Street to Tekoa Street (near Manito Park)
 Estimate: $\$ 382,000$

Problem Statement: Residents of the Manito-Cannon Hills neighborhood raised concerns over the need for sidewalk infill/repair, speeding, and cut through traffic along $25^{\text {th }}$ Avenue from Bernard Street to Tekoa Street (near Manito Park).

$25^{\text {th }}$ Avenue from Bernard Street to Tekoa Street

Traffic Analysis

$25^{\text {th }}$ Avenue is classified as an urban minor collector and provides one lane in each direction and a posted speed limit of 25 miles per hour. $25^{\text {th }}$ Avenue does not allow on-street parking from Tekoa Street to Division Street (at Manito Park) but does the rest of the study area. $25^{\text {th }}$ Avenue is designated as a "bike friendly route" in Spokane Bike and Pedestrian Master Plan. Bernard Street is classified as an urban minor arterial. Bernard Street has a posted speed limit of 30 miles per hour, provides one lane in each direction, on-street parking on the west side of the road, a striped bike lane in both directions, and an acceptable sidewalk network. Bernard Street in the study area is designated as a "high traffic (bike lane)" route in the Spokane Bike and Pedestrian Master Plan.

The table below shows daily traffic counts and $85^{\text {th }}$ Percentile speed data on $25^{\text {th }}$ Avenue between Browne Street and Bernard Street - one block west of the study area. The 2022 daily traffic count was 666 vehicles. The $85^{\text {th }}$ percentile speed along this corridor was 28 miles per hour (3 miles per hour

Spokane Traffic Calming Master Plan

higher than 25 mile per hour posted speed limit). The data indicates that there is a minor speeding problem along $25^{\text {th }}$ Avenue near the study area.

2022 Daily Traffic and $85^{\text {th }}$ Percentile Speeds on $25^{\text {th }}$ Avenue between Browne St and Bernard St

Direction	\# Lanes	$\mathbf{2 0 2 2}$ Estimated Daily Traffic (Vehicles per day)	$\mathbf{8 5}^{\text {th }}$ Percentile Speed $\mathbf{(m p h)}$	Posted Speed $(\mathbf{m p h})$
$25^{\text {th }}$ Avenue				
EB	1	333	27	25
WB	1	333	28	25
Both Dir.	2	666	28	25

$25^{\text {th }}$ Avenue provides a direct connection between Grand Boulevard and Bernard Street along the edge of Manito Park. The curb-to-curb width is approximately 34 -feet with underutilized on-street parking which may encourage higher travel speeds.

Recommended Solution

The roadway could benefit from the addition of traffic calming elements to manage driver speeds and improve the sidewalk network. The following improvements are recommended.

- Repair sidewalk and/or curb at the following locations on $25^{\text {th }}$ Avenue:
- North side of street - Browne Street to 118 W $25^{\text {th }}$ Avenue
- South side of street - Browne Street to 131 W $25^{\text {th }}$ Avenue
- Install curb extensions across $25^{\text {th }}$ Avenue east of Browne Street to reduce vehicle speeds entering the neighborhood.
- Install a marked crosswalk and curb extensions on the north and east legs of the $25^{\text {th }}$ Avenue/Division Street/Park Drive intersection to improve crossing safety to the park and reduce vehicle speeds.

Citr of spokane, washington

25TH AVENUE BROWNE STREET TO DIVIION STREE

Spokane Traffic Calming Master Plan

District: 2
 Neighborhood:
 Project Extent:
 Manito-Cannon Hill, Rockwood
 Grand Boulevard from $17^{\text {th }}$ Avenue to $29^{\text {th }}$ Avenue Estimate: \$1,539,000

Problem Statement: Residents of the Manito-Cannon Hills neighborhood raised concerns over speeding, lack of bicyclist network connectivity, lack of pedestrian crossing facilities, and the width of Grand Boulevard from $17^{\text {th }}$ Avenue to $29^{\text {th }}$ Avenue. Residents of the Rockwood neighborhood raised concerns over pedestrian crossing safety and difficulty crossing a high-volume roadway on Grand Boulevard at $18^{\text {th }}, 21^{\text {st }}$ and $25^{\text {th }}$ Avenues.

Grand Boulevard from $17^{\text {th }}$ Avenue to $\mathbf{2 9}^{\text {th }}$ Avenue

Traffic Analysis

Grand Boulevard in the study area is classified as an urban principal arterial. Grand Boulevard provides two lanes in each direction and has a posted speed limit of 20 miles per hour between $17^{\text {th }}$ Avenue and Manito Place (along Manito Park frontage), and 30 miles per hour between Manito Place and $29^{\text {th }}$

Spokane Traffic Calming Master Plan

Avenue. Grand Boulevard provides two lanes in each direction, no on-street parking, and has an acceptable sidewalk network. There is a pedestrian signal across Grand Boulevard at $18^{\text {th }}$ Avenue. Grand Boulevard in the study area is designated as a "moderate traffic (shared)" route in the Spokane Bike and Pedestrian Master Plan. Grand Boulevard provide transit service and bus stops.

The table below shows daily traffic counts and $85^{\text {th }}$ Percentile speed data at several locations on Grand Boulevard from $17^{\text {th }}$ Avenue to $29^{\text {th }}$ Avenue. The highest 2022 daily traffic count was 15,564 vehicles near $20^{\text {th }}$ Avenue. The highest $85^{\text {th }}$ percentile speed along this corridor was 35 miles per hour near $26^{\text {th }}$ Avenue (5 miles per hour higher than the posted speed limit of 30 miles per hour). The data indicates there is a moderate speed issue along the study corridor.

2022 Estimated Daily Traffic and $85^{\text {th }}$ Percentile Speeds on Grand Boulevard at Several Locations

Direction	\# Lanes	2022 Estimated Daily Traffic (Vehicles per day) ${ }^{\text {a }}$	85 ${ }^{\text {th }}$ Percentile Speed (mph)	$\begin{gathered} \text { Posted Speed } \\ (\mathrm{mph}) \end{gathered}$
$20^{\text {th }}$ Avenue				
NB	2	N/A	N/A	
SB	2	N/A	N/A	
Both Dir.	4	15,564	29	30
$24^{\text {th }}$ Avenue				
NB	2	7,309	33	
SB	2	7,418	32	
Both Dir.	4	14,727	33	30
$25^{\text {th }}$ Avenue				
NB	2	4,933	N/A	
SB	2	9,170	N/A	
Both Dir.	4	14,103	N/A	30
$26^{\text {th }}$ Avenue				
NB	2	N/A	N/A	
SB	2	N/A	N/A	
Both Dir.	4	15,069	35	30
$27^{\text {th }}$ Avenue				
NB	1	N/A	N/A	
SB	1	N/A	N/A	
Both Dir.	2	14,699	34	30
$29^{\text {th }}$ Avenue				
NB		4,922	N/A	
SB		8,924	N/A	
Both Dir.		13,846	N/A	30

[^0]The table below shows the severity and types of crashes occurring on the Grand Boulevard study corridor over the last five years. The data includes all crashes on the corridor and are reported for the nearest intersection. There was a total of 33 crashes, including one minor injury crash where a vehicle hit a pedestrian at Grand Boulevard $/ 25^{\text {th }}$ Avenue. Angle and rearend crashes were the most common crash type.

Crashes on Grand Boulevard from $\mathbf{1 7}^{\text {th }}$ to $\mathbf{2 8}^{\text {th }}$ Avenue (2017 to 2021)

Crash Type	Crash Severity					Total
	Fatal	Major Injury	Minor Injury	Possible Injury	Property Damage Only	
17th Ave	-	-	-	4	7	11
18th Ave	-	-	-	-	1	1
19th Ave	-	-	-	1	-	1
20th Ave	-	-	-	-	1	1
21st Ave	-	1	-	1	3	5
22nd Ave	-	-	-	-	3	3
23rd Ave	-	-	-	1	1	2
24th Ave	-	-	-	-	3	3
25th Ave	-	-	1	-	2	3
26th Ave	-	-	-	-	-	1
27th Ave	-	-	-	-	2	0
28th Ave	-	-	-	7	24	33
Total	-	1	1			

Given the $85^{\text {th }}$ percentile speeds and the angle crash trend, a road diet was considered as means to reduce travel speeds and enhance safety on the study segment. With an estimated 15,000 vehicles per day, Grand Boulevard could be reduced to a three-lane cross section with a center two-way left-turn lane. As a point of reference, the planning level capacity of a two-lane urban arterial is 18,300 vehicles per day (assuming left-turn lanes are provided on the mainline at signalized intersections). ${ }^{1}$

A road diet is expected to reduce crashes by 29\%, per the Crash Modification Factors Clearinghouse. ${ }^{2} \mathrm{~A}$ road diet on Grand Boulevard may also result in more uniform travel speeds on the corridor and is expected to reduce the average travel speed by $3 \mathrm{mph} .{ }^{3}$ Road diets are more successful when implemented on longer stretches of roadway; therefore, it is recommended that the lane reduction continue beyond the study area. When analyzing the cross section and daily traffic volumes on Grand Boulevard, it is recommended that the road diet extend 1.7 miles, from $9^{\text {th }}$ Avenue/McClellan Street (at the north end) to $33^{\text {rd }}$ Avenue (at the south end). The $9^{\text {th }}$ Avenue/McClellan Street intersection is a logical terminus on the north end because Grand Boulevard ends and provides opportunity to drop and

[^1]add lanes at intersection roadways. $33^{\text {rd }}$ Avenue was recommended as the south terminus because Grand Boulevard transitions to a three-lane cross section.

Grand Boulevard in the study area is designated as a "moderate traffic (shared)" route in the Spokane Bike and Pedestrian Master Plan. If the cross-section on Grand Boulevard is reduced to three lanes, there is an opportunity to add bike facilities. The existing curb-to-curb width would allow buffered bike lanes to be added to the corridor segments from $9^{\text {th }}$ to $17^{\text {th }}$ Avenue and $27^{\text {th }}$ to $33^{\text {rd }}$ Avenue. The corridor segment between $17^{\text {th }}$ and $27^{\text {th }}$ Avenue is constrained, allowing a buffered bike lane in the uphill (southbound) direction and shared lane treatment in the downhill (northbound) direction. Bicyclists are anticipated to travel at higher speeds in the downhill direction and more comfortably share a lane with vehicles.

The need for enhanced pedestrian crossing treatments was analyzed for Grand Boulevard based on NCHRP Report 562. Based on the findings, red treatments (e.g., HAWK signal beacon, midblock pedestrian signal) is the preferred treatment if there are 20 or more pedestrian crossings during the peak hour. It was assumed the pedestrian crossing is met given the surrounding urban neighborhood, bus stops and adjacent city park. There is a pedestrian signal across Grand Boulevard at $18^{\text {th }}$ Avenue that connects to the northern area of the park. There are marked crossings with no signal or beacon at the other local streets that intersection the park frontage on Grand Boulevard ($19^{\text {th }}, 20^{\text {th }}, 21^{\text {st }}$ Avenues). An additional pedestrian signal at the southern end of the park would improve pedestrian access. If a pedestrian signal is installed at $21^{\text {st }}$ Avenue/Manito Place, there is a need for sidewalks on Manito Place to provide a connection to the park path system.

Recommended Solution

It is recommended that a road diet be considered on Grand Boulevard, reducing the current four-lane cross section to a three-lane cross section with a center turn-lane. The addition of a center turn-lane is expected to reduce crashes, while the lane reduction is expected to reduce vehicle speeds. It is recommended that the City of Spokane further study the expected impacts of the road diet. The road diet can be considered along the 1.7 -mile segment from $9^{\text {th }}$ Avenue/McClellan Street (at the north end) to $33^{\text {rd }}$ Avenue (at the south end).

Buffered bike lanes in both directions are recommended from $9^{\text {th }}$ to $17^{\text {th }}$ Avenue and $27^{\text {th }}$ to $33^{\text {rd }}$ Avenue. A buffered bike lane in the uphill direction and shared lane treatment in the downhill direction are recommended between $17^{\text {th }}$ and $27^{\text {th }}$ Avenue.

The following improvements are recommended to manage vehicle speeds and increase pedestrian safety along the study corridor.

- Install a rectangular rapid flashing beacon at the existing marked crosswalk on the north leg of the Grand Boulevard $/ 21^{\text {st }}$ Avenue/Manito Place intersection to increase the visibility of the crossing. This location connects to the southern portion of the park and bus stops.

Spokane Traffic Calming Master Plan

- Add a sidewalk on the north side of Manito Place between the marked crosswalk on the north leg of the Grand Boulevard/21 ${ }^{\text {st }}$ Avenue/Manito Place intersection and the park pathway near Manito Boulevard. Pending civil review, the sidewalk could replace the on-street parking to limit impacts to trees.

Paect mune	SPOKANE TRAFFIC CALMIN	G MASTER	PLAN
wis		mer comememem	trafFic
	GRAND BOULEVARD 17TH AVENUE TO 29TH AVENUE	our menere wimer	orvom momer
fromer Lums	NIto-CANNON HILL NEIGHBORHoO	mmome	

9\%a	INSTALL NEW CONCRETE SIDEWALK PER COS STD PLAN F-IO2
$\because \cdots$	mstall lanoscapmg, native fanting
\triangle	Install curb ramp Per cos sto plan fios
	mStal crosswak Per cos stp pla G.61
	Properrime

CONSTRUCTION NOTES

1 MSTAL New Solar refer fedestran crossmg.
properrline

RELIMINART TOR GONTERUGHION NOT POR CON $\begin{gathered}3 \\ 3 \text { OF } 9\end{gathered}$

SPOKANE TRAFFIC CALMING MASTER PLAN GRAND BOULEVARD 1TTH AVENUE TO 29TH AVENU

+4, 4	INSTALL NEW CONCRETE SIDEWALK PER COS STD PLAN F-I O2B
\bigcirc	mstall landscapm, native fantimg
Δ	MSTall Cubb ramp per cos sto plan fios
\square	mSTall croswnalk per cos sto plan G.61
	Proprerr line

CHMMINAR COR GOTRUGUION

CITY OF SPOKANE, WASHINGTON

GRAND BOULEVARD 17TH AVENUE TO 29TH AVEN PRoaler lums manto-CANNON HILL NEIGHBORHOOD

District:
 Neighborhood:
 Project Extent:
 2
 Manito-Cannon Hill
 Bernard Street from $18^{\text {th }}$ Avenue to $21^{\text {st }}$ Avenue Estimate: $\$ 547,000$

Problem Statement: Residents of the Manito-Cannon Hills neighborhood raised concerns over speeding near Manito Park on Bernard Street from $18^{\text {th }}$ Avenue to $21^{\text {st }}$ Avenue.

Bernard Street from $18^{\text {th }}$ Avenue to $21^{\text {st }}$ Avenue

Traffic Analysis

Bernard Street in the study area is classified as an urban minor arterial. Bernard Street has a posted speed limit of 20 miles per hour, provides one lane in each direction, on-street parking on the west side of the road, a striped bike lane in both directions, and an acceptable sidewalk network. Bernard Street is designated as a "high traffic (bike lane)" route in the Spokane Bike and Pedestrian Master Plan. There is a marked school crossing with overhead flashers across Bernard Street at $18^{\text {th }}$ Avenue. All intersections along the study corridor are controlled by a stop sign on the side street. Manito Park fronts the east side of Bernard Street between $20^{\text {th }}$ and $21^{\text {st }}$ Avenue.
$18^{\text {th }}$ Avenue in the study area is classified as an urban local access road. $18^{\text {th }}$ Avenue has a posted speed limit of 20 miles per hour on the west side and 25 miles per hour on the east side. $18^{\text {th }}$ Avenue provides one lane in each direction, on-street parking on both sides of the road and has an acceptable sidewalk network. $18^{\text {th }}$ Avenue in the study area is designated as a "neighborhood greenway" in the Spokane Bike and Pedestrian Master Plan.
$21^{\text {st }}$ Avenue in the study area is classified as an urban local access road. $21^{\text {st }}$ Avenue does not have a posted speed limit, provides one lane in each direction, on-street parking, and an acceptable sidewalk network. $21^{\text {st }}$ Avenue is designated as a "neighborhood greenway" in the Spokane Bike and Pedestrian Master Plan.

The table below shows estimated daily traffic counts at Bernard Street near $18^{\text {th }}$ Avenue. The estimated 2022 daily traffic count was 1,134 vehicles on Bernard Street. There was no speed data available for this study area.

2022 Estimated Daily Traffic on Bernard Street near $18^{\text {th }}$ Avenue

Direction	\# Lanes	$\mathbf{2 0 2 2}$ Estimated Daily Traffic (Vehicles per day) ${ }^{\text {a }}$
Bernard Street		
NB	1	356
SB	1	778
Both Dir.	2	1,134

${ }^{\text {a }}$ Traffic data collected in June 2017. Traffic volumes were grown at a 1.0% annual growth rate, to estimate 2022 traffic conditions.

Three non-injury crashes were recorded over the last five years (from 2017 to 2021) related to angle collisions or hitting an object.

The need for enhanced pedestrian crossing treatments was analyzed for Bernard Street based on NCHRP Report 562. Based on the findings, marked crosswalk treatments is the preferred treatment if there are 20 or more pedestrian crossings during the peak hour. It was assumed the pedestrian crossing is met given the surrounding urban neighborhood, bus stops and adjacent city park. There is a school crossing at $18^{\text {th }}$ Avenue. The addition of a marked crossing at Shoshone Place would provide a connection to the western portion of Manito Park. The addition of a marked crossing at $21^{\text {st }}$ Avenue would be consistent with the City's neighborhood greenway designation.

Potential speeding issues on Bernard Street are a concern, especially with a 20 mile per hour posted speed limit near the park. The roadway provides bike lanes and has on-street parking on the west side of the street so there is limited opportunity to add curb extensions or narrow the roadway with a center median treatment.

Recommended Solution

The following improvements are recommended to manage vehicle speeds and increase pedestrian safety along the study corridor.

- Install curb extensions on the west side of Bernard Street adjacent to the on-street parking at the following locations:
- $19^{\text {th }}$ Avenue
- $20^{\text {th }}$ Avenue

Spokane Traffic Calming Master Plan

- Shoshone Place
- $21^{\text {st }}$ Avenue
- Install a marked pedestrian crossing on the north leg of the Bernard Street/Shoshone Place intersection to provide a connection to the western portion of Manito Park.
- Install a marked pedestrian crossing on Bernard Street at $21^{\text {st }}$ Avenue to support the City's neighborhood greenway designation.

- Propert Lne
\rightarrow intall curb ramp perr cos sto pan fin
\Longrightarrow

2 R Remove Exstimg met. pug anv abandoon exstimg
3 exsting manhole to reman w whace.

MHMINARE Contructrox

SPOKANE TRAFFIC CALMING MASTER PLAN BERNARD STREET 19TH AVENUE TO 21ST AVENUE

District 2, Lincoln Heights: 29th Avenue from High Drive to Madison Street Estimate: \$149,000

foreter wis
CONSTRUCTION NOTES

PRGIMINART OIT EOR CONTRRUGUION
NOT EOB $\frac{7}{7 \text { OF } 9}$

Spokane Traffic Calming Master Plan

District:	2
Neighborhood:	Manito-Cannon Hill
Project Extent:	$28^{\text {th }}$ Avenue from Bernard Street to High Drive

Problem Statement: Residents of the Manito-Cannon Hills neighborhood raised concerns over cutthrough traffic and speeding along $28^{\text {th }}$ Avenue from Bernard Street to High Drive.

$\mathbf{2 8}^{\text {th }}$ Avenue from Bernard Street to High Drive

Traffic Analysis

$28^{\text {th }}$ Avenue in the study area is classified as an urban local street, provides one lane in each direction and on-street parking. $28^{\text {th }}$ Avenue provides sidewalks west of Lincoln Street and does not have a posted speed limit or bike lanes. The curb-to-curb width is approximately 28 -feet.

The table below shows daily traffic counts and $85^{\text {th }}$ percentile speed data on $28^{\text {th }}$ Avenue between Howard Street and Wall Street in the study area. The 2022 daily traffic count was 114 vehicles. The $85^{\text {th }}$ percentile speed along this corridor was 22 miles per hour in the westbound direction on $28^{\text {th }}$ Avenue. The statutory speed limit is 25 miles per hour indicating there is not a speeding concern.

Spokane Traffic Calming Master Plan

2022 Daily Traffic and $85^{\text {th }}$ Percentile Speed on $28^{\text {th }}$ Avenue between Howard Street and Wall Street

Direction	\# Lanes	$\mathbf{2 0 2 2}$ Estimated Daily Traffic (Vehicles per day) $^{\text {a }}$	$\mathbf{8 5}^{\text {th }}$ Percentile Speed (mph)	Posted Speed/Statutory Speed (mph)
$28^{\text {th }}$ Avenue between Howard Street and Wall Street				
EB	1	74	21	
WB	1	40	22	25
Both Dir.	2	114	22	

Recommended Solution

The following improvements are recommended to manage vehicle speeds and discourage cut-through traffic along the study corridor.

- Infill sidewalks on $28^{\text {th }}$ Avenue between Bernard Street and Lincoln Street.

A
Roperrulu

[^0]: ${ }^{\text {a }}$ Traffic data collected in March, June and July of 2015 and May 2018. Traffic volumes were grown at a 1.0% annual growth rate, to estimate 2022 traffic conditions.

[^1]: ${ }^{1}$ Highway Capacity Manual 6th Edition: A Guide for Multimodal Mobility Analysis. Page 16-30, Exhibit 16-16. Washington, DC: The National Academies Press.
 ${ }^{2}$ Crash Modification Factors Clearinghouse, https://www.cmfclearinghouse.org/detail.cfm?facid= 199
 ${ }^{3}$ Engineering Speed Management Countermeasures: A Desktop Reference of Potential Effectiveness in Reducing Speed. Federal Highway Administration. July 2014.

